
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

SCHOOL OF ENGINEERING

OUTPUT-LINEAR ENUMERATION FOR

EXTENSIONS OF MSO

MARTÍN ALONSO MUÑOZ CRUCES

Thesis submitted to the Office of Graduate Studies in partial

fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

CRISTIAN RIVEROS

Santiago de Chile, March 2025

© MMXXV, MARTÍN MUÑOZ

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

SCHOOL OF ENGINEERING

OUTPUT-LINEAR ENUMERATION FOR

EXTENSIONS OF MSO

MARTÍN ALONSO MUÑOZ CRUCES

Members of the Committee:

CRISTIAN RIVEROS

DOMAGOJ VRGOC

PABLO BARCELÓ

GONZALO NAVARRO

NICOLE SCHWEIKARDT

SERGIO MATURANA

Thesis submitted to the Office of Graduate Studies in partial

fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, March 2025

© MMXXV, MARTÍN MUÑOZ

Para Lete

AGRADECIMIENTOS

Acá le dedico una página y media a las personas que me acompañaron durante estos

seis años (de cuatro) mientras realizaba mi doctorado y escribı́a esta tesis. Y por qué no, a

los que me motivaron a seguir este camino.

El agradecimiento más importante es a Cristian que me recibió cuando no sabı́a nada

y ahora puedo decir que sé algo más que nada. Me acompañó y guió sin dejarme en

ningún momento, me mostró una pincelada de temas de investigación que resultaron ser

profundos e interesantes a concho y que espero me van a mantener ocupado por un buen

rato. También gracias a él y a Cristian Ruz por convertirme en coach y agregarle una

dimensión tan llenadora a mi doctorado.

A Marcelo por haber estado ahı́ cuando yo sabı́a aún menos que nada y por el tiempo

que me ha dado entonces y ahora.

Gracias a la PUC, al IMFD, a ANID y al Fondecyt de Cristian que me han mantenido

con vida, y al comité de candidatura+defensa por el apoyo.

To Antoine and Louis for welcoming me in Paris twice, letting me join on some of

the most inspiring research meetings of my career, and showing me what is hopefully a

preview of the next few years of my life.

A la Selección de Programación Competitiva del DCC, y a toda la comunidad actual

de Programación Competitiva en Chile por la motivación y el talento, por convertirse en

un grupo de alumnos de los que puedo sentir orgullo de segunda mano y en un grupo

de amistades con los que puedo seguir armando proyectos y juntas. Y de acá a Bella y

Sensual por no parar de ganar hasta el final y llevarme a darle la vuelta al mundo.

i

A la comunidad antigua de programación competitiva, a Jorge Pérez, Cristian Ruz,

a Marinkovic, a Pablo, Koco y a Lete. Ahı́ entendı́ cuál es la parte que importa de la

computación.

Una mención honrosa a la máquina de café del DCC y a Magnet: ambos me dieron un

empujón hacia el lado de la investigación y la academia en puntos cruciales de mi carrera.

A los de la oficina de doctorado, a Alda, Ceci, Yessenia, a Antonieta y a Cristian Ruz.

A los DCCompas por el apañe, a los cabros de siempre por estar ahı́ siempre y al

AMQ.

Gracias a mi papá, mi mamá, a la Isa y al Luciano por todo lo demás, por no fallarme

nunca y por ser mi centro.

ii

TABLE OF CONTENTS

AGRADECIMIENTOS i

LIST OF FIGURES v

LIST OF TABLES vii

ABSTRACT viii

RESUMEN x

1. INTRODUCTION 1

1.1. Summary of contributions . 9

1.1.1. Nested streaming queries . 9

1.1.2. Annotated Grammars . 11

1.1.3. Queries over compressed documents 14

2. PRELIMINARIES 16

2.1. Strings and Finite State Automata . 16

2.2. Document Spanners . 17

2.3. Enumeration Algorithms . 18

2.4. Model of Computation . 19

3. ENUMERATION FOR NESTED QUERIES 21

3.1. Preliminaries . 21

3.2. Streaming evaluation with output-linear delay 23

3.3. Visibly pushdown annotators . 26

3.4. Results and discussion . 37

3.5. Enumerable compact sets: a data structure for output-linear delay 47

3.6. Evaluating visibly pushdown annotators with output-linear delay 61

3.7. Application: document spanners and extraction grammars 74

3.8. Related Work . 81
iii

4. ENUMERATION FOR ANNOTATED GRAMMARS 83

4.1. Grammars and Annotators . 84

4.2. Unambiguous Grammars . 86

4.3. Rigid Grammars . 95

4.3.1. Definitions . 95

4.4. Pushdown Annotators . 113

4.5. Application: Document Spanners . 129

4.6. Related Work . 142

5. ENUMERATION ON SLP-COMPRESSED DOCUMENTS 144

5.1. Setting and main problem of the chapter 145

5.2. Enumerable compact sets with shifts . 149

5.3. Evaluation of annotated automata over SLP-compressed strings 165

5.4. Applications in regular spanners . 170

5.5. Constant-delay preserving complex document editing 180

6. CONCLUSIONS AND FUTURE WORK 185

REFERENCES 188

iv

LIST OF FIGURES

3.1 An example of a VPAnn T that marks all pairs of positions that correspond to

matching brackets. 28

3.2 A VPAnn implementing the CPath query Q = //a/b. Its input alphabet

consists of the sets Σ< and Σ> of open and closed tags, respectively, {A,B,C}

is the stack alphabet, and {↓} is the output alphabet. 29

3.3 VPAnn used in the proof of Proposition 3.3. On T1, a loop over a node p

labeled by ∗ represents the four transitions (p, <a, p,X), (p, a>,X, p), (p, b, p)

and (p, c, p). 42

3.4 Evolution of the stack St (represented by dashed arrows) for an iterator

over the topmost union node in the figure. The underlying ECS contains

only union nodes and six bottom nodes. The first figure is St after calling

St ← push(St, v), the second is after calling St ← TRAVERSE(St). The last

two figures represent successive calls to pop(St), St← TRAVERSE(St). . . . 53

3.5 Gadget for union(D, v3, v4). Nodes v′, u1, u2, v3 and v4 are labeled as ∪.

Dashed and solid lines denote the mappings in `′ and r′ respectively. 57

3.6 Gadgets for prod as defined for an ε-ECS. Nodes v′a, v
′
b, and v′c correspond to v′

as defined for cases (a), (b), and (c), respectively. 59

3.7 Left: An example run of some VPA A at step k. Right: Illustration of two

nondeterministic runs for some VPA A, as considered in the determinization

process. 63

3.8 Example of running Algorithm 2 over the VPAnn T from Figure 3.1 and a

stream S such that S[1, 6] = <<><>>. The bottom part illustrates the state

of D, and the node from D that is stored at every new index at each step. . . . 68
v

5.1 Example of an annotated automaton. 147

5.2 An example of a Shift-ECS with output alphabet {x, y}. We use dashed and

solid edges for the left and right partial functions, respectively. 151

5.3 Evolution of the stack St (written on the bottom and represented by dashed

arrows) for an iterator over the node v in the figure. The underlying ECS

is made of union nodes, two Z nodes, and six bottom nodes. The first

figure is St after calling St ← push(St, (v, 0)), the second is after calling

St ← TRAVERSE(St). The last two figures represent successive calls to

pop(St), St← TRAVERSE(St). 156

5.4 (a) Gadget for prod(D, v1, v2, k). (b) Gadget for union(D, v3, v4). We use

dashed and solid edges for the left and right mappings, respectively. Node

names are in grey at the left of each node. Nodes in square boxes are the input

and output nodes of each operation. 161

5.5 Gadgets for prod as defined for a Shift-ECS with the ε-node. 164

vi

LIST OF TABLES

vii

ABSTRACT

Enumeration algorithms for data extraction queries are especially relevant in modern-day

systems where data reaches extremely large sizes while sometimes having little-to-no or-

ganization. This thesis proposes an enumeration framework for queries for data extraction

that can be modeled by different formal languages, and in some cases, over compressed

data. This is done by the development of an enumeration data structure called Enumerable

Compact Set, which provides a set of basic operations over sets, each implementable in

constant time, that render a concise representation of the set of results which can then be

enumerated efficiently.

First, this thesis provides an algorithm for enumerating results of a query that has been

modeled by a nested-word automata, over a nested document. This algorithm is built

to work in a streaming setting, and requires time that is independent from the data size

(constant in data-complexity) per input symbol.

Second, we detail three algorithms for enumeration for queries that are modeled by context-

free grammars. We deal with the cases of unambiguous, rigid and determinable grammars,

which require cubic, quadratic and linear time over the data, respectively.

Third, we show enumeration over compressed documents via an algorithm that receives

a regular-language query and a document that is concisely represented as a straight-line

program. The enumeration can be done after linear time preprocessing in the size of the

compact representation.

This thesis also serves as a proof of concept of the Annotated Automata model. This model

properly subsumes Document Spanners efficient reductions, and allows the construction

of algorithms that we deem to be more intuitive and easier to implement. Needless to say,

all of our results are also applicable to Document Spanners.

viii

Keywords: Data Structures and Algorithms, Formal Languages and Automata Theory,

Logic in Computer Science.

ix

RESUMEN

Los algoritmos de enumeración para consultas de extracción de datos son especialmente

relevantes en los sistemas de hoy en dı́a, donde los datos alcanzan tamaños extremada-

mente grandes y, a veces, tienen poca o ninguna organización. Esta tesis propone un

marco teórico de enumeración para consultas de extracción de datos que se pueden mode-

lar mediante diferentes lenguajes formales y, en algunos casos, sobre datos comprimidos.

Esto se hace mediante el desarrollo de una estructura de datos de enumeración llamada

Enumerable Compact Sets (Conjuntos Comprimidos Enumerables en inglés), que propor-

ciona un conjunto de operaciones básicas sobre conjuntos, cada uno implementable en

tiempo constante, cuyo resultado es una representación concisa del conjunto de resultados

que luego se puede enumerar de manera eficiente.

En el primer capı́tulo, esta tesis entrega un algoritmo para enumerar los resultados de una

consulta que ha sido modelada por un autómata de palabras anidadas, sobre un documento

anidado. Este algoritmo está diseñado para funcionar en un entorno de streaming y re-

quiere un tiempo independiente al tamaño de los datos (constante en data complexity) en

cada sı́mbolo de entrada.

En el segundo capı́tulo, detallamos tres algoritmos de enumeración para consultas que se

modelan mediante gramáticas libres de contexto. Tratamos los casos de gramáticas no-

ambiguas, rı́gidas y deterministas, que requieren tiempo cúbico, cuadrático y lineal sobre

los datos, respectivamente.

En el tercer capı́tulo, mostramos la enumeración sobre documentos comprimidos mediante

un algoritmo que recibe una consulta en lenguaje regular y un documento que se representa

concisamente como un programa straight-line. La enumeración se puede realizar después

del preprocesamiento en tiempo lineal en el tamaño de la representación compacta.

x

Esta tesis también sirve como prueba de concepto del modelo de Annotated Automata

(Autómatas anotados en inglés). Este modelo considera satisfactoriamente reducciones

eficientes desde Document Spanners y permite la construcción de algoritmos que consid-

eramos más intuitivos y fáciles de implementar. Vale decir que todos nuestros resultados

también son aplicables a Document Spanners.

Keywords: Estructuras de datos y algoritmos, lenguajes formales y teorı́a de autómatas,

lógica en ciencias de la computación.

xi

1

1. INTRODUCTION

The term Big Data is believed to have been originated in the mid-1990s, back when

the Internet was utilized by some tens of millions of users. Even then, as the usage of the

term suggests, there was a distinct necessity of processing tremendous amounts of data ef-

ficiently. In 2023, this number grew to 5,4 billion users (ITU, 2023), and that has naturally

brought a great increase in the amount of raw data that is available and required to be pro-

cessed. An example of online data task that has become commonplace are recommenda-

tion algorithms. Nowadays, four out of the five most visited sites on the Internet nowadays

use user-generated information to suggest content back to the users (Similarweb, 2024).

To name a few numbers, Netflix reported in 2012 that their users queued 2 million movies

and TV shows, and generated 4 million ratings a day (Netflix, 2012), all of which is data

that feeds into their recommendation algorithms. Another task is content management

and moderation. In contexts where millions of messages are being sent daily, these are

considered crucial to curb undesirable data such as fake news (Fang et al., 2024) and hate

speech (Fortuna, Soler Company, & Wanner, 2021). These cases show how overreaching,

diverse and massive the online data processing tasks have become.

The blowup of large data processing has happened in the offline world as well. In bio-

logical research, human genomes consist of around three billion base pairs, which translate

into several gigabytes of raw data that is processed when performing genome-matching or

detecting genetic diseases (Boucher et al., 2021). Modern space missions, such as GAIA

and LSST, are expected to produce Petabytes of data (Brahem, Zeitouni, & Yeh, 2020).

To name a few other examples of offline data processing, patents are analyzed in bulk in

order to predict future litigations (S. Chen & Lai, 2023); GPS records from large popula-

tions can be used in urban planning projects (Li et al., 2023); and historical crime data is

massively processed to predict crime (Liang et al., 2023).

2

The importance and desirability of having adequate data processing solutions is un-

questionable. In many cases, these algorithms need to be sharply efficient, to the point of

making any solution that takes time longer than linear in the data size useless in practice.

In database systems, it is common to talk about query evaluation as the most elemen-

tary task which extracts relevant information from data. It can be formally defined by an

instance (Q,D) in which Q is the query and D is the data. Each query Q also defines a

function which maps D into the desired set of outputs Q(D). As an example, consider

the task of detecting if a chromosome, written as a sequence of bases, contains a certain

pattern in it that may correspond to a particular disease. In this case, it would make sense

to let D be the sequence of bases written as a string, and Q would be the pattern one wants

to find. If the task is a yes/no question – is the pattern Q present in D? – then Q(D) can

evaluate to either true or false, but if one wants to also know all of the positions in the

sequence that match that pattern, Q(D) would be a set that contains all relevant positions,

and in the case there are none, it evaluates to an empty set. With this formalization, one

can talk about linear-time solutions as those algorithms that take time proportional to the

size of D to compute Q(D).

It is also useful to frame results around query languages, which define classes of

queries by their syntax and semantics. For instance, one can solve the task above by

using regular expressions as the query language (see (Pin, 2021) for a precise definition):

we can make Q be the regular expression r = .*p.* where p is the pattern string. In this

case, we are using a usual semantics for regular expressions which is that r has to match

the entire text; the sequence .* is a wildcard that matches any string, and so r is a match

if the data is equal to anything, followed by p, followed by anything. Another aspect of

query languages that make them natural to work with is that each of them also comes with

a certain expressive power. For example, no regular expression can define the query of

checking if two strings are identical (Pin, 2021), whereas there are more powerful query

languages that can. As evaluation algorithms are built for each particular query language,

a weaker one can require less running time or less memory space in the worst case. It can

3

happen that the same query becomes cheaper to compute if the user simply expresses it in

a different language.

When measuring the execution time of a evaluation algorithm, the classic notion is

to count the number of steps taken by the algorithm from the moment it begins, until the

last output is printed. Since algorithms are built for inputs of different sizes, we typically

measure this execution time as a function of the size of the input. This is a reasonable

model whenever the overall output size is small, e.g., when the output is simply true or

false, or a numeric value. However, for tasks in which one can expect a large amount of

outputs, which occur quite naturally in many data management problems, it makes sense

to treat the output printing phase separately. Naturally, the best execution time one can

expect for this phase is linear in the size of the entire output set, so the overall running

time that we will set as our goal is given by |D|+ |Q(D)|. Here we are using the standard

notation |x| to refer to the size of an adequate encoding of x.

In database systems, there are many cases in which an evaluation problem can have a

large output set. For instance, one may be interested not only in all elements in the data

that satisfy a certain condition, but in tuples or subsets of them. Or perhaps the data may

not fit in memory: it could be given in a streaming fashion or it could be compressed,

and this implies that even an output set that has size linear in the raw data might be huge.

An obvious problem here is that producing all outputs can take unreasonably long, but a

more subtle one is that when one measures the running time of an algorithm, the cost of

writing the outputs hides the cost of actually doing the calculations to obtain them. For

this reason, a significant line of research on query evaluation has adopted the perspective

of enumeration algorithms (Bagan, 2006a). Instead of explicitly producing all results, the

task is to enumerate them, in any order and without repetition. The cost of the algorithm

is then measured across two dimensions: the preprocessing time, which is the time needed

to read the input and prepare an enumeration data structure; and the delay, the worst-case

time that can elapse between any two solutions while enumerating using the data structure.

4

In the realm of enumeration algorithms, there is an even finer complexity yardstick:

We say that an algorithm has constant-delay (Segoufin, 2013) if the delay between any two

consecutive outputs is constant. One can think of this as an enumeration phase in which

the outputs are produced in a fixed pace, never stopping until the last output is produced.

However, this delay guarantee is not a reasonable one unless every output is expected to

have constant size. Instead, in a lot of cases it makes more sense to set as a goal what

we call output-linear delay (Florenzano, Riveros, Ugarte, Vansummeren, & Vrgoc, 2020).

This is a relaxation of constant-delay which only requires the delay between two outputs

to be linear in the size of the earlier one.

As an example, consider the task of receiving a list of numbers, such asL = [5, 7, 2, 12],

and producing a list of pairs (x1, y1), (x2, y2), . . . , (xn, yn) in which x1, x2, . . . , xn is the

sorted list, and each yi is the difference between xi and xi+1. For the said L, the desired

set of outputs could be {(2, 3), (5, 2), (7, 5), (12,∞)}. A constant-delay algorithm may

simply sort the list, read it sequentially and produce each value along with the difference.

Now, consider the task of again receiving a list of numbers, but now instead of printing

the difference between two numbers, we ask for the numbers that are present in that gap.

For the input L, the output set would be {(2, 3, 4), (5, 6), (7, 8, 9, 10, 11), (12,∞)}. In this

case, there is no reasonable way of solving this with a constant-delay algorithm, since the

size of a single output could be arbitrarily large, even for a list of size 2. However, sorting

the list, traversing it linearly and writing down the gaps as they are seen is a perfectly valid

solution that satisfies output-linear delay.

One area where enumeration algorithms have been especially successful is the field

of information extraction, where document spanners have been proposed as a suitable

formalism (Fagin, Kimelfeld, Reiss, & Vansummeren, 2015). Information extraction cap-

tures the family of data management tasks where the data is a document, i.e, a string of

characters, and the query is a description of the information that should be extracted from

the text. A spanner formalizes this idea by defining a function that maps documents to

sets of mappings, which themselves map variables to substrings of the document (called

5

spans). The enumeration problem is then to enumerate all mappings of a spanner on an in-

put document. The work by Florenzano et al. (Florenzano et al., 2020) showed that, if the

spanner is described by a finite automaton, then the task could be solved with output-linear

delay after a preprocessing that is linear in the document, and polynomial in the spanner

if the automaton is deterministic; this was extended in (Amarilli, Bourhis, Mengel, &

Niewerth, 2019c) to allow similar bounds for nondeterministic finite automata.

Solving enumeration tasks is a fundamental problem in database systems, and this is

the main topic of this thesis: finding efficient algorithms to evaluate queries over great

volumes of data with output-linear delay. In particular, we work on this problem over

nested documents or query languages over documents that allow recursion.

In many practical cases, the way these large volumes of data are contained is in doc-

uments that have a pre-established recursive structure. It may be hierarchical, like XML

and JSON documents, or program-like, as in some forms of compressed text (Ziv & Lem-

pel, 1977; Storer & Szymanski, 1982; Claude & Navarro, 2011). These documents are

designed to be read by computers; the way the user is expected to access the data is by

writing a query using a suitable query language, and then process the query through a

specialized evaluation algorithm.

Let us look at a simple XML document to show how data may be laid out in practice.

The following document (separated in two columns) contains information about musical

artists and albums satisfying the hierarchy Artist->Album-> [Title, Year]:

<Document>

<Artist>

<Name>Los Tres</Name>

<Album>

<Title>Los Tres</Title>

<Year>1991</Year>

</Album>

<Album>

<Title>Fome</Title>

<Year>1997</Year>

</Album>

</Artist>

<Artist>

<Name>La Ley</Name>

<Album>

<Title>Invisible</Title>

6

<Year>1995</Year>

</Album>

</Artist>

<Artist>

<Name>Tiro de Gracia</Name>

<Album>

<Title>Ser Humano!!</Title>

<Year>1997</Year>

</Album>

</Artist>

</Document>

It can be appreciated how XML owes its classification of “semi-structured data” to the

fact that the contents maintain a lot of the flexibility of unstructured data (e.g. plain-text

documents), yet there is some machine-oriented structure to the data that aids its process-

ing. In the example above, the entire document contains a list of artists, and the structure

requires the info of each to be demarcated by the tags <Document> and </Document>

In this thesis, we will sometimes restrict ourselves to evaluation tasks where the data

part of the query is presented with certain recursive structures—namely, nested docu-

ments, and program-like documents. For some tasks, we allow a more standard plain-text

structure.

Let us now discuss the presentation aspect for the query part of a task. That is, the

query languages that we will deal with in this thesis: these are all extensions to a logic

called Monadic Second Order Logic. The logic in itself is of immense theoretical im-

portance, but in actual data extraction tasks it is rarely used as-is. The reader might be

more familiar with a query language which is equivalent in expressive power to Monadic

Second Order over documents—that is, regular expressions. In database systems and data

extraction tasks, regular expressions (regex for short) have long been a favoured choice

for theoreticians, developers and users alike.

When a single document is huge, and queries are simple enough, it makes sense to use

a language based on regular expressions, such as XPath in the case of XML. Continuing

the ”albums” example above, an XPath query that produces the albums that were released

7

in the year 1997 might look as follows:

Q = //Artist/Album[Year = 1997].

This would output info about albums Fome and Ser Humano!!.

In the case of compressed text, one can use a plain regular expression, and process it

using some of the known algorithms that evaluate it on the compressed file itself (Lohrey,

2012). Among these solutions, one uses regular spanners (i.e. document spanners based

on regular expressions) over compressed documents to enumerate with delay that is loga-

rithmic in the size of the uncompressed document (Schmid & Schweikardt, 2021).

There are evaluation tasks in which regular expressions are not powerful enough, and

the data document does not have a pre-established structure. The immediate extension to

regular expressions and MSO that also allows the query itself to infer this very structure are

context-free grammars. Some scenarios in which this type of queries have been famously

used are code parsing and verification on nested documents—both scenarios where the

data itself would ideally satisfy a desired structure, but this is not a-priori guaranteed.

Grammars by themselves do not describe how to capture substrings, so they are not im-

mediately suited for extracting data. One model that has been proposed to bridge this gap

is based on document spanners and is called Extraction Grammars (Peterfreund, 2023).

These are defined by context-free grammars which allow beginning and ending position

marks in its syntax. In same work, we also find a relevant enumeration result. It shows

constant-delay enumeration after a preprocessing that takes quintic time on the size of the

document.

Having discussed some scenarios where one would want to extract data using queries

that are based on regex and their extensions, we note that each used an ad-hoc extension

of the yes/no query language to capture the desired outputs. We contrast this with MSO,

which has the ability to define queries that extract sets of positions in an input document in

a natural fashion. This is especially useful for us, as this ability implies there is a generic

8

adaptation from yes/no evaluation into queries with several, complex outputs, for every

extension of MSO.

This idea is the core of the Annotator framework, which translates many rule-based

binary query languages into query languages with complex outputs. It does so by contin-

uing to use the same type of binary model that describes the query while adding a second

dimension to the alphabet that describes the data—we use these as the symbols the model

will treat as letters. For instance, the underlying binary model of an annotator may accept

words such as (a, x)bb(a, y) or a(b, x)(b, y)a, and if we give the word abba to the annota-

tor, it will define an output set that includes the strings (x, 1)(y, 4) and (x, 2)(y, 3). The

first string represents the idea that if we extend abba by appending an x to the first position,

and a y to the fourth position, the resulting word is accepted by the model, and the second

string represents the analogous idea.

We have found that some of the relevant models for document spanners that extend

a binary query language into a complex one—as is the case for Regular Spanners and

Extraction Grammars—can be reduced into an annotator with only a minor blowup. More

importantly, we believe that this change makes the evaluation algorithms simpler, and that

it is a reason behind our finding improvements in the best-known bounds for them.

The main goal of this thesis is thus to explore the power of the Annotator framework,

and provide efficient enumeration algorithms for the ways it can be used to deal with

known query languages. It is worth noting that while many of the query languages studied

in the literature were restricted to outputs with a fixed size, annotators by default do not

impose any such restriction, so all of our results are given in the best-possible delay bound

that this circumstance allows; namely, output-linear delay.

To this end, in this thesis we present three different formalisms for information ex-

traction and then provide an efficient enumeration scheme for queries expressed in each

of them. These are: (1.) Automata over streams of nested documents, (2.) context-free

9

grammars which represent annotations in documents and (3.) regular automata over com-

pressed documents.

1.1. Summary of contributions

This document is structured in three main chapters. In the following, we present a

brief summary of each.

1.1.1. Nested streaming queries

Streaming query evaluation (Altınel & Franklin, 2000; Babcock, Babu, Datar, Mot-

wani, & Widom, 2002) is the task of processing queries over data streams in one pass

and with a limited amount of resources. This approach is especially useful on the web,

where servers share data, and they have to extract the relevant content as they receive it.

For structuring the data, the de facto structure on the web is nested documents, like XML

or JSON. For querying, servers use languages designed for these purposes, like XPath,

XQuery, or JSON query languages. As an illustrative example, suppose our data server

(e.g., a Web API) is continuously receiving XML documents like:

<doc> <a> <c/> <c> </c> </doc> ...

and for each document it has to evaluate the query Q = //a/b (i.e., to extract all b-

tags that are surrounded by an a-tag). The streaming query evaluation problem consists

of reading these documents and finding all b-tags without storing the entire document on

memory, that is, by making one pass over the data and spending constant time per tag. In

our example, we need to retrieve the 3rd and 5th tags as soon as the last tag </doc> is

received. One could consider here that the server has to read an infinite stream and perform

the query evaluation continuously, where it must enumerate partial outputs as soon as one

of the XML documents ends.

10

Researchers have studied the streaming query evaluation problem in the past, focusing

on reducing the processing time or memory usage (see, e.g. (Bar-Yossef, Fontoura, &

Josifovski, 2007)). Hence, they spent less effort on understanding the enumeration time

of such a problem, with respect to delay guarantees between outputs. Constant-delay enu-

meration is a new notion of efficiency for retrieving outputs (Durand & Grandjean, 2007;

Segoufin, 2013). Given an instance of the problem, a constant-delay enumeration algo-

rithm performs a preprocessing phase over the instance to build some indices and then

continues with an enumeration phase. It retrieves each output, one by one, taking a de-

lay that is constant between any two consecutive outcomes. These algorithms provide a

strong guarantee of efficiency since a user knows that, after the preprocessing phase, she

will access the output as if the algorithm had already computed it. These techniques have

attracted researchers’ attention, finding sophisticated solutions to several query evalua-

tion problems (Bagan, Durand, & Grandjean, 2007; Berkholz, Gerhardt, & Schweikardt,

2020; Bagan, 2006a; Amarilli, Bourhis, Jachiet, & Mengel, 2017; Florenzano et al., 2020;

Amarilli, Bourhis, Mengel, & Niewerth, 2019a).

In this chapter, we investigate the streaming query evaluation problem over nested doc-

uments by including enumeration guarantees, like constant delay. We study the evaluation

of queries given by visibly pushdown annotators (VPAnn) over nested documents. These

machines are an “output extension” of visibly pushdown automata, and have the same ex-

pressive power as MSO over nested documents. In particular, VPAnn can define queries

like Q above or any fragment of query languages for XML or JSON included in MSO.

Therefore, VPAnn allow considering the streaming query evaluation from a more general

perspective, without getting married to a specific language (e.g., XPath).

We study the evaluation of VPAnn over a nested document in a streaming fashion.

Specifically, we want to find a streaming algorithm that reads the document sequentially

and spends as little time as possible per input symbol. Furthermore, whenever needed,

the algorithm can enumerate all outputs with output-linear delay. The main contribu-

tion in this chapter is an algorithm with such characteristics for the class of unambiguous

11

VPAnn. We can extend this algorithm to all VPAnn by determinization (preserving its

data complexity). Regarding memory usage, we bound the amount of memory used in

terms of the nesting of the document and the output weight. We show that our algorithm

is worst-case optimal in the sense that there are instances where the maximum amount of

memory required by any streaming algorithm is at least one of these two measures. Fi-

nally, we present some examples that show how our result can be applied to the streaming

evaluation of XML and JSON query languages. Further, we show an application of our

results in the context of information extraction by document spanners (Fagin et al., 2015).

1.1.2. Annotated Grammars

A natural way to address extraction over structured data is to move from finite au-

tomata to context-free grammars (CFGs). Context-free grammars are a well-known for-

malism: they extend regular expressions and are commonly used, e.g., in programming

language design. Common verification tasks on textual representations of tree documents

can be expressed using CFGs, and so can parsing tasks, e.g., to extract subexpressions

from source code data. However, CFGs do not describe captures, i.e., they do not specify

how to extract the parts of interest of an input document, and thus cannot be used directly

for information extraction.

This question of information extraction with grammars was studied by Peterfreund

in very recent work (Peterfreund, 2023). This paper proposed a formalism of extraction

grammars, which are CFGs extended via special terminals that describe the endpoints of

spans. Further, it presents an algorithm to enumerate the mappings captured by unambigu-

ous extraction grammars on an input document. However, while the algorithm achieves

constant-delay, the preprocessing bound is significantly worse than in the case of regular

spanners: it is quintic in the document, and exponential in the number of variables of the

grammar. This complexity is also worse than CFG parsing, e.g., the standard CYK parsing

algorithm runs in cubic time in the input string.

12

Our goal in this chapter is to study the enumeration problem for CFGs while achieving

better complexities. Our algorithms ensure a constant-delay guarantee when outputs have

constant size, and more generally ensure output-linear delay when this is not the case:

the delay is linear in the size of each produced solution. Within this delay bound, the

preprocessing time has lower complexity: it is at worse cubic in the input document, and

improves to quadratic or even linear time for restricted classes. We achieve these results

by proposing a new formalism to extend CFGs, called annotated grammars, on which we

impose an unambiguity restriction similar to that of (Peterfreund, 2023). Let us present

our specific contributions.

Our first contribution is to introduce annotated grammars (Section 4.1). They are a

natural extension of CFGs, where terminals are optionally annotated by the information

that we wish to extract. We then study the problem, given an annotated grammar G and

document s, of enumerating all annotations of s that are derived by G. This captures the

enumeration problems for regular spanners (Florenzano, Riveros, Ugarte, Vansummeren,

& Vrgoc, 2018; Amarilli, Bourhis, Mengel, & Niewerth, 2020), nested words, and even

the extraction grammars of (Peterfreund, 2023) (we explain this in Section 4.5). As we

explain, we aim for output-linear delay, which is the best possible delay in our setting

where the solutions to output may have non-constant size.

Our second contribution is to study the enumeration problem for unambiguous anno-

tated grammars (Section 4.2), that do not produce multiple times the same annotation of

an input string. This is a natural restriction to avoid duplicate results, which is also made

in (Peterfreund, 2023). For such grammars, we present an algorithm to enumerate the

annotations produced by a grammar G on a string s with output-linear delay (independent

from G or s), after a preprocessing time ofO(|G|·|s|3), i.e., cubic time in s, and linear time

in G. This improves over the result of (Peterfreund, 2023) whose preprocessing is quintic.

Our algorithm has a modular design: it follows a standard design of a CFG parsing algo-

rithm, but uses the abstract data structure of Chapter 3 to represent the sets of annotations

and combine them with operators in a way that allows for output-linear enumeration. We

13

further show a conditional lower bound on the best preprocessing time that can achieve

output-linear delay, by reducing from the standard task of checking membership to a CFG,

and using the lower bound of (Abboud, Backurs, & Williams, 2018). We show that the

preprocessing time must be Ω(|s|ω−c) for every c > 0, where ω is the Boolean matrix

multiplication exponent.

Our third contribution is to improve the preprocessing time by imposing a different

requirement on grammars. Thus, we introduce rigid annotated grammars (Section 4.3)

where, for every input string, all annotations on the string are intuitively produced by parse

trees that have the same shape. In contrast with general annotated grammars, we show that

rigid annotated grammars can always be made unambiguous, so that our algorithm applies

to them. But we also show that, under this restriction, the data complexity of our algorithm

goes down from cubic to quadratic time. Further, achieving sub-quadratic preprocessing

time would imply a sub-quadratic algorithm to test membership to an unambiguous CFG,

which is an open problem.

Our last contribution shows how we can, in certain cases, achieve linear-time pre-

processing complexity and output-linear delay (Section 4.4). This is the complexity of

enumeration for regular spanners, and is by definition the best possible. We show that the

same complexity can be achieved, beyond regular spanners, for a subclass of rigid gram-

mars, intuitively defined by a determinism requirement. We define it via the formalism of

pushdown annotators (PDAnn for short), which are the analogue of pushdown automata

for CFGs, or the extraction pushdown automata of (Peterfreund, 2023). We show that

PDAnn are equally expressive to annotated grammars, and that rigid CFGs correspond to

a natural class of PDAnns where all runs have the same sequence of stack heights. More-

over, we show that we can enumerate with linear-time preprocessing and output-linear

delay in the case of profiled-deterministic PDAnn, where the sequence of stack heights

can be computed deterministically over the run: this generalizes regular spanners and

visibly-pushdown automata.

14

1.1.3. Queries over compressed documents

Recently, Schmid and Schweikardt (Schmid & Schweikardt, 2021, 2022) studied the

evaluation problem for regular spanners over a document compressed by a Straight-line

Program (SLP). In this setting, one encodes a document through a context-free grammar

that produces a single string (i.e., the document itself). This mechanism allows highly

compressible documents, in some instances allowing logarithmic space compared to the

uncompressed copy. The enumeration problem consists now of evaluating a regular span-

ner over an SLP-compressed document. In (Schmid & Schweikardt, 2021), the authors

provided a logarithmic-delay (over the uncompressed document) algorithm for the prob-

lem, and in (Schmid & Schweikardt, 2022), they extended this setting to edit operations

over SLP documents, maintaining the delay. In particular, these works left open whether

one can solve the enumeration problem of regular spanners over SLP-compressed docu-

ments with a constant-delay guarantee.

In this chapter, we extend the understanding of the evaluation problem over SLP-

compressed documents in several directions.

We study the evaluation problem of annotated automata (AnnA) over SLP-compressed

documents. These automata are a general model for defining regular enumeration prob-

lems, which strictly generalizes the model of extended variable-set automaton used in (Schmid

& Schweikardt, 2021).

We provide an output-linear delay enumeration algorithm for the problem of evaluat-

ing an unambiguous AnnA over an SLP-compressed document. In particular, this result

implies a constant-delay enumeration algorithm for evaluating extended variable-set au-

tomaton, giving a positive answer to the open problem left in (Schmid & Schweikardt,

2021).

We show that this result extends to what we call a succinctly annotated automaton,

a generalization of AnnA whose annotations are succinctly encoded by an enumeration

15

scheme. We develop an output-linear delay enumeration algorithm for this model, show-

ing a constant-delay algorithm for sequential (non-extended) vset automata, strictly gen-

eralizing the work in (Schmid & Schweikardt, 2021).

Finally, we show that one can maintain these algorithmic results when dealing with

complex document editing as in (Schmid & Schweikardt, 2022).

The main technical result in this chapter is to show that the Enumerable Compact Sets

presented in Chapter 3 can be extended to deal with shift operators (called Shift-ECS). This

extension allows us to compactly represent the outputs and “shift” the results in constant

time, which is to add or subtract a common value to all elements in a set. Then, by using

matrices with Shift-ECS nodes, we can follow a bottom-up evaluation of the annotated

automaton over the grammar (similar to (Schmid & Schweikardt, 2021)) to enumerate all

outputs with output-linear delay. The combination of annotated automata and Shift-ECSs

considerably simplifies the algorithm presentation, reaching a better delay bound.

This thesis is structured in the following way: In Chapter 2, we describe some ter-

minology that will be used throughout the three main chapters. The first main chapter is

Chapter 3, in which we show our results for nested streaming queries. The second is Chap-

ter 4, in which we show our results for annotated grammars. The third is Chapter 5, in

which we show our results for queries over compressed documents. Lastly, in Chapter 6,

we give some closing words and list the main conclusions.

16

2. PRELIMINARIES

Throughout this document we will use several formalisms for processing text. In or-

der of expressiveness, we will deal with finite automata and regular expressions, nested

or visibly pushdown automata, and context-free grammars and pushdown automata. We

dedicate this chapter to defining these models.

2.1. Strings and Finite State Automata

Strings and documents. Given a finite alphabet Σ, a string w over Σ (or just a string)

is a sequence w = a1a2 . . . an ∈ Σ∗. Given strings w1 and w2, we write w1 · w2 (or just

w1w2) for the concatenation of w1 and w2. We denote by |w| = n the length of the string

w = a1 . . . an and by ε the string of length 0. We use Σ∗ to denote the set of all strings,

and Σ+ for all strings with one or more symbols. Due to differences in the literature, in

some chapters we will refer to strings as documents with the same indications, except we

will prefer d instead of w to denote a generic document.

Regular automata. A regular automata is a tupleA = (Q,Σ,∆, I, F) whereQ is a finite

set of states, Σ is an input alphabet, I ⊆ Q and F ⊆ Q are the initial and final set of states,

respectively, and ∆ ⊆ Q× Σ×Q is the transition relation.

A run ρ of A over a string s = a1a2 . . . an ∈ Σ∗ is a sequence of the form:

ρ := q1
a1−→ q2

a2−→ . . .
an+1−−−→ qn+1

such that q1 ∈ I and, for each i ∈ {1, . . . , n}, it holds that (qi, ai, qi+1) ∈ ∆. We

say that ρ is accepting if qn+1 ∈ F . We define the language of A as L(A) = {s |

there is an accepting run of A over s}.

17

We say that A is deterministic if for each pair (p, a) ∈ Q× Σ there exists exactly one

q ∈ Q such that (p, a, q) ∈ ∆.1 We say that A is unambiguous if for each s ∈ L(A) there

exists exactly one accepting run of A over s.

2.2. Document Spanners

Consider a document d = a1 . . . an over an input alphabet Σ. A span of d is a pair

[i, j〉 with 1 ≤ i ≤ j ≤ n+ 1. Intuitively, a span represents a substring of d by identifying

the starting and ending positions. We define the substring [i, j〉 by d[i, j〉 = ai . . . aj−1.

We denote by Spans(d) the set of all possible spans of d.

Consider also a set of variables Vars such that Σ ∩ Vars = ∅. Let X ⊆ Vars be a

finite set of variables. An (X, d)-mapping (or just a mapping) µ : X → Spans(d) assigns

variables in X to spans of d. An (X, d)-relation is a finite set of (X, d)-mappings. Then

a document spanner P (or just spanner) is a function associated with a finite set X of

variables that map documents d into (X, d)-relations.

For X ⊆ Vars, let CX = { `x,ax| x ∈ X} be the set of captures of X where,

intuitively, `x denotes the opening of x, andax its closing.

In some chapters we will use ref-words as an intermediate step between the structure

that defines a spanner (such as a grammar or an automaton) and the mappings themselves.

Formally, a ref-word is just a string r ∈ (Σ∪CX)∗. A ref-word r = a1 . . . an ∈ (Σ∪CX)∗

is called valid for X if, for every x ∈ X , there exists exactly one position i with ai =`x

and exactly one position j with aj =ax, such that i < j. In other words, a valid ref-

word defines a correct match of opening and closing captures. Moreover, each x ∈ X

induces a unique factorization of r of the form r = rpx· `x · rx · ax ·rsx. This factorization

defines an (X, d)-mapping as follows. Let plain : (Σ ∪ CX)∗ → Σ∗ be the morphism that

removes the captures from ref-words, namely, plain(a) = a when a ∈ Σ and plain(c) = ε

1In some of the literature, deterministic is defined as automata for which there exist at most one q per (p, a).
We restrict ourselves to the definition in the paragraph.

18

when c ∈ CX . We extend plain to operate homomorphically over strings. Furthermore,

let r be a valid ref-word for X , d be a document, and assume that plain(r) = d. Then

we define the (X, d)-mapping µr such that µr(x) = [i, j〉 iff r = rpx· `x · rx · ax ·rsx,

i = |plain(rpx)|+ 1, and j = i+ |plain(rx)|.

As an example, consider the document d = h e l l o g o o d b y e. If we letX = {x, y},

then a valid ref-word for X would be r = h e l l o `x `y g o o d ax b y e ay. Note that

plain(r) = d, and thus the (X, d)-mapping µr is properly defined as µr(x) = [6, 10〉 and

µr(y) = [6, 13〉.

2.3. Enumeration Algorithms

All of the main results in this thesis are given in the framework of enumeration al-

gorithms. Such algorithms consist of two phases. First, in the preprocessing phase, the

algorithm receives the input I = (Q,w) where Q is a query and w is a string, and pro-

duces some index structure D. The preprocessing time is the worst-case running time of

this preprocessing phase, measured as a function of the input I. We say that such an algo-

rithm has f -preprocessing time if there exists a constant c such that, for every input I, the

time for the preprocessing phase of I is bounded by c · f(|I|).

As I is made of two components Q and w, we also sometimes measure the prepro-

cessing time in terms of w only. This is referred to as the data complexity of the problem.

On the other hand, when a problem is measured in terms of both w and Q this is referred

to as its combined complexity.

For the purposes of this definition, we will overload Q to denote both the structure

that defines the query, and the function that maps w to a desired set of outputs Q(w).

In the following chapters, these concepts are separated by notation, for example, if the

input query is represented by a structure S, the associated function is denoted as JSK.

Furthermore, we assume that each element y ∈ Q(w) is a string y ∈ Ω∗ for some set of

output symbols Ω.

19

Second, in the enumeration phase, the algorithm can use Q, w and D to produce

the elements of the output set Q(w) one after the other and without repetitions. During

this phase the algorithm: (1) writes #y1#y2# · · ·#ym# to the output registers where

is a distinct separator symbol not mentioned in any output, and y1, y2, . . . , ym is an

enumeration (without repetitions) of the set Q(w), (2) it writes the first # as soon as the

enumeration phase starts, and (3) it stops immediately after writing the last #.

For the enumeration phase, we measure the delay between two outputs as follows.

For an input x ∈ Ω∗, let #y1#y2# · · ·#ym# be the output of the algorithm during any

call to the enumeration phase. Furthermore, let timei(x) be the time in the enumeration

phase when the algorithm writes the i-th # when running on x for i ≤ m + 1. Define

delayi(x) = timei+1(x)− timei(x) for i ≤ m. Then we say that the algorithm has output-

linear delay (Florenzano et al., 2020)2, if there exists a constant k such that for every

x ∈ Ω∗ and i ≤ m it holds that delayi(x) ≤ k · |yi|. In other words, the number of

instructions executed by the enumeration algorithm between the time that the i-th and the

(i+ 1)-th # are written is linear on the size of yi. Note that, in particular, an output-linear

delay implies that the enumeration phase ends in constant time if there is no output for

enumerating.

The memory usage of the algorithm is the maximum memory used across both phases,

including the size of D.

2.4. Model of Computation

As it is common in the enumeration algorithms literature (Bagan, 2006a; Courcelle,

2009; Segoufin, 2013), for our algorithms we assume the computational model of Random

Access Machines (RAM) with uniform cost measure, and addition and subtraction as basic

operations (Aho, Hopcroft, & Ullman, 1974). We assume that a RAM has read-only input

registers where the machine places the input, read-write work registers where it does the

2output-linear delay has also been called linear delay in the literature (Courcelle, 2009)

20

computation and write-only output registers where it gives the output (i.e., the enumeration

of the results).

21

3. ENUMERATION FOR NESTED QUERIES

In this chapter, we present a query model named Visibly Pushdown Annotators (VPAnn),

which is a computational model that extends visibly pushdown automata with outputs and

has the same expressive power as Monadic Second Order over nested documents. We

study the task of receiving the input data in a streaming document, and we show an algo-

rithm which enumerates the outputs with output-linear delay after a preprocessing phase

which takes data-independent time after receiving each character in the input data.

Furthermore, we show that this algorithm is worst-case optimal in terms of update-time

per symbol and memory usage.

Outline of the chapter. In Section 3.1, we describe the main terminology and models for

the chapter. In Section 3.2, we discuss the notion of a streaming enumeration problem.

In Section 3.3, we define Visibly Pushdown Annotators (VPAnn), the logical model we

will use to represent queries over nested documents and study their expressive power.

In Section 3.4, we state the main result of the chapter and discuss some of its extent. In

Section 3.5, we show the data structure used by the algorithm, called Enumerable Compact

Set, which stores the output and handles the enumeration efficiently. Section 3.6 presents

and analyzes the main algorithm. In Section 3.7, we link our results to document spanners.

We close this chapter in Section 3.8 by discussing some related work.

3.1. Preliminaries

We start by stating the definitions of well-nested words and visibly pushdown au-

tomata. Further, we state some basic definitions that will be useful throughout the chapter.

Well-nested words and streams. Besides the usual definitions for strings, we will work

over a structured alphabet Σ = (Σ<,Σ>,Σ|) comprised of three disjoint sets Σ<, Σ>,

22

and Σ| that contain open, close, and neutral symbols respectively1. Furthermore, we will

denote symbols in Σ<, Σ> or Σ| by <a, a>, and a, respectively. On the other hand, we will

use s to denote any symbol in Σ<, Σ>, or Σ|. The set of well-nested words over Σ, denoted

as Σ<*>, is defined as the smallest set satisfying the following rules: Σ| ∪ {ε} ⊆ Σ<*>,

if w1, w2 ∈ Σ<*> then w1 · w2 ∈ Σ<*>, and if w ∈ Σ<*> and <a ∈ Σ< and b> ∈ Σ> then

<a·w·b> ∈ Σ<*>. In addition, we will work with prefixes of well-nested words, that we call

prefix-nested words. We denote the set of prefixes of Σ<*> as prefix(Σ<*>). Sometimes,

we will use w[i] to refer to the i-th symbol in a word w.

Visibly pushdown automata. A visibly pushdown automaton (Alur & Madhusudan,

2004b) (VPA) is a tuple:

A = (Q,Σ,Γ,∆, I, F)

where Q is a finite set of states, Σ = (Σ<,Σ>,Σ|) is the structured input alphabet, Γ is the

stack alphabet, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and

∆ ⊆ (Q× Σ< ×Q× Γ) ∪ (Q× Σ> × Γ×Q) ∪ (Q× Σ| ×Q)

is the transition relation. A transition (q, <a, q′, γ) is a push-transition where on reading

<a ∈ Σ<, the symbol γ is pushed onto the stack and the current state switches from q to

q′. Conversely, (q, a>, γ, q′) is a pop-transition where on reading a> ∈ Σ> from the input

and γ from the top of the stack, the current state changes from q to q′, and the symbol γ

is popped. Lastly, we say that (q, a, q′) is a neutral transition if a ∈ Σ|, where there is no

stack operation.

A stack is a finite sequence σ over Γ where the top of the stack is the first symbol on σ.

For a well-nested word w = s1 · · · sn in Σ<*>, a run of A on w is a sequence:

ρ = (q1, σ1)
s1−→ (q2, σ2)

s2−→ . . .
sn−→ (qn+1, σn+1),

1In (Alur & Madhusudan, 2004b; Filiot, Raskin, Reynier, Servais, & Talbot, 2018) these sets are named call,
return, and local, respectively.

23

where each qj ∈ Q and σj ∈ Γ∗ for every j ∈ [1, n], q1 ∈ I , σ1 = ε, and for every i ∈ [1, n]

the following holds: (1) if si ∈ Σ<, then there is γ ∈ Γ such that (qi, si, qi+1, γ) ∈ ∆ and

σi+1 = γσi, (2) if si ∈ Σ>, then there is γ ∈ Γ such that (qi, si, γ, qi+1) ∈ ∆ and

σi = γσi+1, and (3) if si ∈ Σ|, then (qi, si, qi+1) ∈ ∆ and σi+1 = σi. A run ρ is accepting

if qn+1 ∈ F . A well-nested word w ∈ Σ<*> is accepted by a VPAA if there is an accepting

run of A on w. The language L(A) is the set of well-nested words accepted by A. Note

that if ρ is a run of A on a well-nested word w, then σn+1 = ε. A set of well-nested

words L ⊆ Σ<*> is called a visibly pushdown language if there exists a VPA A such that

L = L(A).

A VPA A = (Q,Σ,Γ, δ, I, F) is said to be deterministic if |I| = 1 and δ is a function

subset of the set (Q × Σ< → Q × Γ) ∪ (Q × Σ> × Γ → Q) ∪ (Q × Σ| → Q). We also

say that A is unambiguous if, for every w ∈ L(A), there exists exactly one accepting run

of A on w. In (Alur & Madhusudan, 2004b), it is shown that for every VPA there exists

an equivalent deterministic VPA of at most exponential size.

Streams. A stream S = s1s2 · · · is an infinite sequence where si ∈ Σ< ∪ Σ> ∪ Σ|. Given

a stream S = s1s2 . . . and positions i, j ∈ N \ {0} such that i ≤ j, the word S[i, j] is the

sequence sisi+1 · · · sj . We also use this notation to refer to contiguous subsequences of

infinite sequences that are not composed of symbols in Σ. For a stream S, we will always

assume that for each i ∈ N \ {0}, the word S[1, i] is a prefix of some nested word (i.e., it

can be completed to form a nested word). For our streaming algorithms, we also consider

the method yieldS which can be called to access each element of S sequentially.

3.2. Streaming evaluation with output-linear delay

Our first task in this chapter is to define a notion of a streaming enumeration prob-

lem: evaluating a query over a stream and enumerating the outputs with bounded delay.

Towards this goal, we want to restrict the resources used (i.e., time and space) and im-

pose strong guarantees on the delay. As our gold standard, we consider the notion of

24

output-linear delay defined in (Florenzano et al., 2020). This notion is a refinement of

the definition of constant-delay (Segoufin, 2013) or linear-delay (Courcelle, 2009) enu-

meration that better fits our purpose. Altogether, our plan for this section is to define a

streaming enumeration problem and then provide a notion of efficiency that a solution for

this problem should satisfy.

We adopt the setting of relations (Jerrum, Valiant, & Vazirani, 1986; Arenas, Croque-

vielle, Jayaram, & Riveros, 2019) to formalize a streaming enumeration problem. First,

we need to define what is an enumeration problem outside the stream setting, and we will

use a subtler definition than the one described in the preliminaries. Let Ω be an alphabet.

An enumeration problem is a relation R ⊆ (Ω∗ × Ω∗)× Ω∗. For each pair ((q, x), y) ∈ R

we view (q, x) as the input of the problem and y as a possible output for (q, x). Further-

more, we call q the query and x the data. This separation allows for a fine-grained analysis

of the query complexity and data complexity of the problem. For an instance (q, x) we

define the set JqKR(x) = {y | ((q, x), y) ∈ R} of all outputs of evaluating q over x.

A streaming enumeration problem is an extension of an enumeration problemR where

the input is a pair (q,S) such that S is an infinite sequence of elements in Ω. We identify

two ways of extending an enumeration problem R that differ in the output sets that are

desired at each position in the stream:

(i) The streaming full-enumeration problem for R is one where the objective is to

enumerate the set JqKR(S[1, n]) at each position n ≥ 1.

(ii) A streaming ∆-enumeration problem for R is one where the objective is to enu-

merate the set JqK∆
R(S[1, n]) = JqKR(S[1, n]) \

⋃
i<n JqKR(S[1, i]) at each posi-

tion n ≥ 1.

These versions give us two different ways of returning the outputs. Both notions have been

studied previously in the context of incremental view maintenance (Chirkova & Yang,

2012) and more recently, for dynamic query evaluation (Idris, Ugarte, & Vansummeren,

2017; Berkholz, Keppeler, & Schweikardt, 2017). For the sake of simplification, in the

25

following, we provide all definitions for the full-enumeration scenario. Note that all defi-

nitions can be extended to ∆-enumeration by changing JqKR to JqK∆
R .

We now turn to our efficiency notion for solving a streaming enumeration problem

like the above. Let f : N → N be a function. We say that E is a streaming evaluation

algorithm for R with f -update-time if E operates in the following way: it receives a query

q and reads the stream S by calling the yieldS method sequentially. After the n-th call

to yieldS, the algorithm processes the n-th data symbol in two phases:

• In the first phase, called the update phase, the algorithm updates a data structure

D with the read symbol, and the time spent is bounded by O(f(|q|)).

• The second phase, called the enumeration phase, occurs immediately after each

update phase and outputs JqKR(S[1, n]) using D. During this phase the algo-

rithm: (1) writes #y1#y2# · · ·#ym# to the output registers where # is a dis-

tinct separator symbol not contained in Ω, and y1, y2, . . . , ym is an enumeration

(without repetitions) of the set JqKR(S[1, n]), (2) it writes the first # as soon as

the enumeration phase starts, and (3) it stops immediately after writing the last

#.

The purpose of separating E’s operation into an update and enumeration phase is to

make an output-sensitive analysis of E’s complexity. Moreover, from a user perspec-

tive, this separation allows running the enumeration phase without interrupting the update

phase. That is, the user could execute the enumeration phase in a separate machine, and

its running time only depends on how many outputs she wants to enumerate.

We omit the time analysis of the enumeration phase and the definition of delay as it

was included in Section 2.3.

As the last ingredient, we define how to measure the memory space of a streaming

evaluation. Note that after the n-th call a streaming evaluation algorithm with f -update-

time will necessarily use at most O(n · f(|q|)) space. As a refinement of this bound, we

26

say that this algorithm uses g-space over a query q and stream S if the number of bits used

by it after the n-th call is in O(g(|q|,S[1, n])).

Given a streaming enumeration problem, we say that it can be solved with update-time

f , output-linear delay, and in g-space if an algorithm such as the one described above ex-

ists. For ∆-enumeration, the notion of streaming evaluation algorithm also applies, even

though it could be the case that one can find such an algorithm for full-enumeration but

not for ∆-enumeration, and vice versa. To finish, we would like to remark that the enu-

meration problem and solutions provided here are a formal refinement of the algorithmic

notions proposed in the literature of streaming evaluation (Gauwin, Niehren, & Tison,

2009b), dynamic query evaluation (Berkholz et al., 2017; Idris et al., 2017), and complex

event processing (Grez, Riveros, & Ugarte, 2019; Grez & Riveros, 2020).

3.3. Visibly pushdown annotators

In this section, we present the definition of visibly pushdown annotators (VPAnn),

which are an extension of visibly pushdown automata to produce outputs. We use VPAnn

as our computational model to represent queries with output. This model is general enough

to include the regular core of most query languages for nested documents, like XML or

JSON, whose expressive power is included in Monadic Second Order logic (MSO) (see

next section for a discussion). In the following, we present the VPAnn model and provide

some examples.

A visibly pushdown annotator (VPAnn) is a tuple T = (Q,Σ,Γ,Ω,∆, I, F) where Q,

Σ, Γ, I , and F are the same as for VPA, Ω is the output alphabet of annotations such that

Σ ∩ (Σ× Ω) = ∅, and:

∆ ⊆ Q×
(
Σ< ∪ (Σ<× Ω)

)
×Q× Γ ∪

Q×
(
Σ> ∪ (Σ>× Ω)

)
× Γ×Q ∪

Q×
(
Σ| ∪ (Σ|× Ω)

)
×Q

27

is the transition relation. A symbol s ∈ Σ< ∪Σ> ∪Σ| is an input symbol that the machine

reads and o^∈ Ω is an annotation symbol that the machine produces. Intuitively, the second

component of each transition in ∆ decides non-deterministically whether the machine

reads and annotates an input symbol (i.e., Σ × Ω) or just reads an input symbol without

annotating it (i.e., Σ).

A run ρ of T over a well-nested word w = s1s2 · · · sn ∈ Σ<*> is a sequence of the

form:

ρ = (q1, σ1)
b1−→ (q2, σ2)

b2−→ . . .
bn−→ (qn+1, σn+1)

where qi ∈ Q, σi ∈ Γ∗, q1 ∈ I , σ1 = ε, and either bi = si or bi = (si, o^) for some o^∈ Ω,

for every i ∈ [1, n]. In addition, the following holds for every i ∈ [1, n]:

(i) if bi ∈ Σ< ∪ (Σ<×Ω), then (qi, bi, qi+1, γ) ∈ ∆ for some γ ∈ Γ and σi+1 = γσi,

(ii) if bi ∈ Σ> ∪ (Σ>×Ω), then (qi, bi, γ, qi+1) ∈ ∆ for some γ ∈ Γ and σi = γσi+1,

and

(iii) if bi ∈ Σ| ∪ (Σ|× Ω), then (pi, bi, qi+1) ∈ ∆ and σi = σi+1.

We call a pair (qi, σi) a configuration of ρ. We say that the run is accepting if qn+1 ∈ F .

Regarding the output of an accepting run ρ like above, we define the output of ρ as:

out(ρ) = out(b1, 1) · . . . · out(bn, n)

where out((si, o^), i) = (o^, i) when bi = (si, o^) and out(si, i) = ε when bi = si. Then,

given a VPAnn T and a w ∈ Σ<*>, we define the set JTK(w) of all outputs of T over w as:

JTK(w) = {out(ρ) | ρ is an accepting run of T over w}.

As is usual with automata, VPAnn are depicted as directed graphs. We represent an

open transition (x, <s, o^, y, γ) by an edge from state x to state y with the label <s/γ : o^, a

close transition (x, s>, o^, γ, y) with the label <s, γ : o^, and a neutral transition (x, s, o^, y)

with the label s : o^. If the transition is non-annotating (e.g., (x, <s, y, γ)), we omit the ‘: o^’

.

28

Σ = ({<}, {>}, ∅), Ω = {., /}, Γ = {X,Y}
Q = {p, q, r}, I = {p}, F = {r}
∆ = { (p,<, p,X), (p,>,X, p)

(p, (<, .), q,Y), (q,<, q,X), (q,>,X, q)

(q, (>, /),Y, r), (r,<, r,X), (r,>,X, r) }

p q r

</X

>,X

</Y : .

</X

>,X

>/Y : /

</X

>,X.

Figure 3.1. An example of a VPAnn T that marks all pairs of positions that
correspond to matching brackets.

Example 3.1. Consider the VPAnn T depicted in Figure 3.1. On the left side is its

formal definition and on the right is its graphical representation.

As an important note regarding the notation, this VPAnn in particular uses names

p, q, r (sans serif) for its states. These are not to be confused with the symbols p, q, r that

we use elsewhere for referring to a generic state in an arbitrary VPAnn.

The VPAnn T in Figure 3.1 receives a well-nested word over the input alphabet Σ =

({<}, {>}, ∅) and marks all pairs of positions that correspond to matching brackets. For

the sake of illustration, below we show the three accepting runs of T over the word w =

<<><>>.

p, ε q,Y q,XY q,Y q,XY q,Y r, ε
(<, .) < > < > (>, /)

p, ε p,X q,YX r,X r,XX r,X r, ε< (<, .) (>, /) < > >

p, ε p,X p,XX p,X q,YX r,X r, ε< < > (<, .) (>, /) >

Then the reader can check that the output set of running T over w is:

JTK(w) =
{

(., 1)(/, 6), (., 2)(/, 3), (., 4)(/, 5)
}
.

Strictly speaking, our definition of VPAnn is richer than the one studied in (Filiot et

al., 2018). In our definition of VPAnn each output element is a tuple (o^, i) where o^ is

the symbol and i is the output position, where for a standard VPT (Filiot et al., 2018) an

output element is just the symbol o^. The extension presented here is indeed important for

practical applications like in document spanners (Florenzano et al., 2020; Amarilli et al.,

29

q0 q1 q2 q3 q4

Σ</C

Σ>,C

<a/A

Σ</C

Σ>,C

<b/B : ↓

Σ</C

Σ>,C

b> ,B : ↓

Σ</C

Σ>,C

a> ,A

Σ</C

Σ>,C

Figure 3.2. A VPAnn implementing the CPath query Q = //a/b. Its
input alphabet consists of the sets Σ< and Σ> of open and closed tags, re-
spectively, {A,B,C} is the stack alphabet, and {↓} is the output alphabet.

2019a) or in XML query evaluation (Bar-Yossef, Fontoura, & Josifovski, 2005; Shalem &

Bar-Yossef, 2008), as we show next.

Expressiveness of visibly pushdown annotators. How useful are VPAnn as a computa-

tional model for representing queries over nested words? To motivate this question, recall

the XPath query Q = //a/b presented in the introduction, whose outputs are all pairs

of nested tags and inside some nested tags <a> and . In Figure 3.2 we

show a VPAnn equivalent to Q. The VPAnn processes an XML document by moving

non-deterministically from q0 to q1 when it reads an open tag <a> and then to q2 when it

reads an open tag and marks it with ↓. Then it moves to q3 when it reads the match-

ing close tag marking it with ↓, and it moves to an accepting state when it reads

the corresponding close tag . The reader can easily check that this VPAnn marks all

pairs of b-tags satisfying Q.

As in the previous example, one could ask whether VPAnn can encode every XPath

query or any other query language over nested documents (e.g., JSON). To answer this

question, we study the expressiveness of VPAnn by comparing it to MSO over nested

words. We show that VPAnn is equally expressive to MSO over nested words with open

MSO variables. Given that fragments of query languages over nested documents (e.g.,

navigational XPath (ten Cate & Marx, 2007), JSON Navigational Logic (Bourhis, Reutter,

& Vrgoc, 2020)) are included in MSO logics, this result shows that VPAnn is a useful

computational model to express query evaluation problems over nested documents. We

30

continue this section by defining MSO over nested words in order to state and prove the

main result of the chapter.

In (Alur & Madhusudan, 2004b), it was shown that VPA describe the same class of

queries as MSO over nested words, called MSOmatch. Formally, fix a structured alphabet

Σ and let w ∈ Σ<*> be a word of length n. We encode w as a logic structure:(
A, ≤, {Pa}a∈Σ, match

)
whereA = [1, n] is the domain,≤ is the total order over [1, n], each Pa is a unary predicate

encoding the appearance of letter a ∈ Σ such that Pa = {i | w[i] = a}, and match is a

binary relation over [1, n] that corresponds to the matching relation of open and close

symbols. Formally, for every i, j ∈ A, match(i, j) is true if, and only if, w[i] is an open

symbol and w[j] is its matching close symbol. Then, an MSOmatch formula ϕ over Σ is

given by the following syntax:

ϕ := Pa(x) | x ∈ X | x ≤ y | match(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x and y are first-order variables and X is a monadic second order (MSO)

variable. We will use x̄ as a shorthand for a list of first-order variables x1, . . . , x` and X̄

as a shorthand for a list of MSO variables X1, . . . , Xm. Then, we can write ϕ(x̄, X̄) to

denote an MSOmatch formula ϕ where x̄ and X̄ are the free variables of ϕ. By some abuse

of notation, we will also use x̄ and X̄ as sets and write x̄∪ X̄ to denote the union of x̄ and

X̄ .

An assignment σ for w is a function σ : x̄ ∪ X̄ → 2[1,n] such that |σ(x)| = 1 for

every x ∈ x̄. Here, we treat first-order variables as a special case of MSO variables. As

usual, we denote by dom(σ) = x̄ ∪ X̄ the domain of the function σ. Then we write

(w, σ) |= ϕ(x̄, X̄) when σ is an assignment over w, dom(σ) = x̄ ∪ X̄ , and w satisfies

ϕ(x̄, X̄) when each variable in x̄∪X̄ is instantiated by σ (see (Libkin, 2004) for the formal

31

semantics of MSO). Given a formula ϕ(x̄, X̄), we define:

JϕK(w) = {σ | (w, σ) |= ϕ(x̄, X̄)}.

For the sake of simplification, from now on we will only use X̄ to denote the free variables

of ϕ(X̄) and use X ∈ X̄ for a first-order or monadic second-order variable.

Given an assignment σ over w, we can represent σ as a sequence of annotations and

positions as follows. First, define the support of σ, denoted by supp(σ), as the set of

positions mentioned in σ; formally, supp(σ) = {i | ∃X ∈ dom(σ) such that i ∈ σ(X)}.

Next, assume that supp(σ) = {i1, . . . , im} such that ij < ij+1 for every j < m. Then, we

define the sequence encoding of σ as:

enc(σ) = (X̄1, i1) (X̄2, i2) . . . (X̄m, im)

such that X̄j = {X ∈ dom(σ) | ij ∈ σ(X)} for every j ≤ m. In other words, we

represent σ as an increasing sequence, where each position is labeled with the variables of

σ where it belongs.

We can now precisely state the equivalence between VPAnn and queries defined by

MSO over nested words. Fix a structured alphabet Σ and a set of MSO variables X̄ . We

say that a VPAnn T with output alphabet 2X̄ is equivalent to an MSOmatch formula ϕ(X̄),

denoted by T ≡ ϕ, if, and only if, JTK(w) = {enc(σ) | σ ∈ JϕK(w)} for every w ∈ Σ<*>.

In other words, the outputs of T are equivalent to the satisfying assignments of ϕ encoded

as sequences.

PROPOSITION 3.1. For any MSOmatch formula ϕ(X̄) there exists a VPAnn T with

output alphabet 2X̄ such that T ≡ ϕ, and conversely.

PROOF. The following proof is largely based on the proof of Theorem 4 in (Alur &

Madhusudan, 2004b). We start by showing how to convert a MSOmatch formula ϕ(X̄)

into an equivalent VPAnn T . For this, we can follow the exact same argument as the if

direction of the proof in (Alur & Madhusudan, 2004b) and assume we can obtain a VPA

32

Aϕ over the input alphabet ΣX̄ = Σ × 2X̄ whose language is the set of words which

encode a valuation σ of X̄ along with a word w for which (w, σ) |= ϕ(X̄). We define a

straightforward transformation from Aϕ to T as follows. Let t be a transition in Aϕ and

let (a, V) be its input symbol with V ∈ 2X̄ . If V 6= ∅ the corresponding transition t′ in T

is kept the same, except it has an input symbol a, and an output symbol V , and if V = ∅,

then t′ is obtained by simply replacing (a, V) by a. One can easily check that T ≡ ϕ,

proving the first direction.

To prove the other direction, we can convert T into a VPA AT with input alphabet ΣX̄

in the opposite way and use the result of (Alur & Madhusudan, 2004b) itself to obtain a

MSOmatch formula with no free variables ϕ′ over the same input alphabet. We replace any

instance of P(a,V)(x) in ϕ by the expression Pa(x) ∧
∧
X∈V x ∈ X ∧

∧
X∈X̄\V x 6∈ X to

obtain a formula ϕ(X̄) over Σ which proves the statement. �

We conclude that VPAnn has the same expressive power as MSO over nested words,

which implies that VPAnn can represent the navigational fragments of languages like

XPath and JSON Navigational Logic subsumed by MSO. In the next section, we comple-

ment this result by stating our main algorithmic results regarding the streaming evaluation

of VPAnn. Before that, we introduce a class of visibly pushdown annotators that will be

crucial for our algorithmic results.

Deterministic and unambiguous visibly pushdown annotators. We say that a VPAnn

T = (Q,Σ,Γ,Ω,∆, I, F) is input/output deterministic (I/O-deterministic for short) if

|I| = 1 and ∆ is a partial function of the form:

∆ ⊆ Q×
(
Σ< ∪ (Σ<× Ω)

)
→ Q× Γ ∪

Q×
(
Σ> ∪ (Σ>× Ω)

)
× Γ→ Q ∪

Q×
(
Σ| ∪ (Σ|× Ω)

)
→ Q

33

Also, we say that T is input/output unambiguous (I/O-unambiguous for short) if for every

w ∈ Σ<*> and every µ ∈ JTK(w) there is exactly one accepting run ρ of T over w such

that µ = out(ρ).

Notice that an I/O-deterministic VPAnn is also I/O-unambiguous. Intuitively, a VPAnn

is I/O-deterministic (I/O-unambiguous) if, given the input word and a sequence of annota-

tions, the automaton behaves in a deterministic (unambiguous, resp.) manner. The defini-

tion is in line with the notion of I/O-deterministic variable automata of (Florenzano et al.,

2020) and I/O-unambiguous is a generalization of this idea that is enough for the purpose

of our enumeration algorithm.

In the next result, we show that for every VPAnn T there exists an equivalent I/O-

deterministic VPAnn and, therefore, an equivalent I/O-unambiguous VPAnn.

PROPOSITION 3.2. For every VPAnn T there exists an I/O-deterministic VPAnn T ′ of

size O(2|Q|
2|Γ|) such that JTK(w) = JT ′K(w) for every w ∈ Σ<*>.

PROOF. Let T = (Q,Σ,Γ,Ω,∆, I, F). For the sake of presentation, assume that

∆ contains only transitions with an output symbol, the proof can be extended straightfor-

wardly to include transitions with no output symbol. We will construct an I/O-deterministic

VPAnn T ′ = (Q′,Σ,Γ′,Ω, δdet, SI , F
′) as follows. Let Q′ = 2Q×Q and Γ′ = 2Q×Γ×Q. Let

SI = {(q, q) | q ∈ I} and let F ′ = {S | (p, q) ∈ S for some p ∈ I and q ∈ F}. Let δ be

defined as follows:

• For <a ∈ Σ< and o^∈ Ω, δ(S, <a, o^) = (S ′, T), where:

T = {(p, γ, q) | (p, p′) ∈ S and (p′, <a, o^, γ, q) ∈ ∆ for some q ∈ Q},

S ′ = {(q, q) | (p, p′) ∈ S and (p′, <a, o^, γ, q) ∈ ∆ for some p, p′ ∈ Q and γ ∈ Γ}

34

• For a> ∈ Σ> and o^∈ Ω, δ(S, a>, o^, T) = S ′ where, if T ⊆ Q× Γ×Q, then:

S ′ = {(p, q) | (p, γ, p′) ∈ T and (p′, q′) ∈ S and (q′, a>, o^, γ, q) ∈ ∆

for some p′, q′ ∈ Q, γ ∈ Γ},

• For a ∈ Σ| and o^∈ Ω, δ(S, a, o^) = S ′ where:

S ′ = {(q, q′′) | (q, q′) ∈ S and (q′, a, o^, q′′) ∈ ∆ for some q′ ∈ Q}.

One can immediately check that this automaton is I/O-deterministic since the transition

relation is given as a partial function.

We will prove that T and T ′ are equivalent by induction on well-nested words. To aid

our proof, we will introduce a couple of ideas. First, we extend the definition of a run to

include sequences that start on an arbitary configuration. Also, given a run

ρ = (q1, σ1)
b1−→ (q2, σ2)

b2−→ · · · bn−→ (qn+1, σn+1),

and a span [i, j〉, define a subrun of ρ as the subsequence

ρ[i, j〉 = (qi, σi)
bi−→ (qi+1, σi+1)

bi+1−−→ · · · bj−1−−→ (qj, σj).

In this proof, we only consider subruns such that w[i, j〉 = sisi+1 · · · sj−1 is a well-

nested word. A second definition we will use is that of a VPAnn with arbitrary initial

states. Formally, let q ∈ Q. We define Tq as the VPAnn that simulates T by starting on

the configuration (q, ε). Note that for a run ρ = (q1, σ1)
b1−→ · · · bn−→ (qn+1, σn+1) of T over

w = s1 · · · sn and a well-nested span [i, j〉, the subrun ρ[i, j〉 is one of the runs of Tq over

w[i, j〉 modulo σi, which is present in all of the stacks in ρ as a common suffix.

We shall prove first that JTK(w) ⊆ JT ′K(w) for every well-nested word w. This is

done with the help of the following result.

35

CLAIM 3.1. For a well-nested word w, output µ, states p, q ⊆ Q, and a set S that

contains (p, q), if there is a run of Tq over w with output µ such that its last state is q′, the

(only) run of T ′S over w with output µ ends in a state S ′ which contains (p, q′).

PROOF. We will prove the claim by induction on w. If w = ε, the proof is trivial since

q = q′. If w = a ∈ Σ| the proof follows straightforwardly from the construction of δ.

If w, v ∈ Σ<*>, let p, q ∈ Q, let S be a set that contains (p, q), and let ρ be a run of

Tq over wv with output µ · κ, which ends in a state q′, for some µ and κ. Our goal is

to prove that the run ρ′ of T ′S over w · v with output µ · κ as output ends in a state that

contains (p, q′). Let n = |w|, m = |v|, and let qw be the last state of the subrun ρ[1, n+1〉.

Consider as well ρ[n+ 1, n+m+ 1〉, which is a run of Tqw over v with output κ that ends

in q′. From the hypothesis two conditions follow: (1) In the run of T ′S over w with output

µ, the last state S ′ contains (p, qw), and (2) in the run of T ′S′ over v that has κ as output

the last state contains (p, q′). It can be seen that ρ′ is the concatenation of these two runs,

so this proves the claim.

If w ∈ Σ<*>, <a ∈ Σ<, b> ∈ Σ>, let p, q ∈ Q, S be a set that contains (p, q), and let ρ be

a run of Tq over <awb> with output (o^1, 1)µ(o^2, n+ 2) for some µ ∈ Ω∗, o^1, o
^

2 ∈ Ω, where

n = |w|. Let q, q2, . . . , qn+2, qn+3 be the states of ρ in order. Our goal is to prove that

the run ρ′ of T ′S over <awb> with output (o^1, 1)µ(o^2, n + 2) ends in a state that contains

(p, qn+3). Let (q2, γ) be the second configuration of ρ. This implies that (q, <a, o^1, q2, γ) ∈

∆ and (qn+2, b>, o^2, γ, qn+3) ∈ ∆. Let S ′ and T be such that δ(S, <a, o^1) = (S ′, T).

Therefore, (q2, q2) ∈ S ′ and (p, γ, q2) ∈ T . Consider the subrun ρ[2, n + 2〉, which can

be found as a run of Tq2 over w with output µ, modulo the stack suffix γ, and note that

it ends in qn+2. Since (q2, q2) ∈ S ′, from the hypothesis it follows that the run of T ′S′
over w with output µ ends in a state S ′′ that contains (q2, qn+2). This run starts on the

configuration (S ′, ε) and ends in (S ′′, ε), so a run on the same automaton that starts on

(S ′, T) and reads the same symbols will end in (S ′′, T), which is the case for the subrun

36

ρ′[2, n+ 2〉. Therefore, the construction of δ implies that (p, qn+3) is contained in the last

state of ρ′, which proves the claim. �

Now let w be a well-nested word and let µ ∈ JTK(w). Let ρ be some accepting run of

T over w with output µ, and let p∗ ∈ I be its first state and q∗ ∈ F its ending state. Clearly,

ρ is also a run of Tp. Now, let us use the claim over the set S = SI and states p = q = p∗,

using the fact that (p, p) ∈ SI . We obtain that the run of T ′SI
over w with output µ ends

in a state S ′ which contains (p, q) and so, is it accepting. Since T ′SI
= T ′, this proves that

JTK(w) ⊆ JT ′K(w).

To prove that JT ′K(w) ⊆ JTK(w) we use a similar result:

CLAIM 3.2. For a well-nested word w, output µ, states q, p, q′ ⊆ Q, and a set S that

contains (p, q), if the run of T ′S over w with output µ ends on a state S ′ that contains

(p, q′), then there is a run of Tq over w with output µ such that its last state is q′.

PROOF. We will prove the claim by induction on w. If w = ε, the proof is trivial since

q = q′. If w = a ∈ Σ| the proof follows straightforwardly from the construction of δ.

If w, v ∈ Σ<*>, let p, q, q′ ∈ Q, let S be a set that contains (p, q), and let ρ be the run

of T ′S over w · v with output µ · κ, for some µ and κ, which ends in a state S ′ that contains

(p, q′). Our goal is to prove that there is a run ρ′ of Tq over w · v with output µ · κ such

that its last state is q′. Let n = |w|, m = |v|, and let Sw be the last state of the subrun

ρ[1, n+ 1〉. Consider as well ρ[n+ 1, n+m+ 1〉, which is also a run of T ′Sw over v with

output κ that ends in S ′. From the construction of δ, it is clear that if a non-empty state S ′

follows from S in a run of T ′, then S is not empty. Let (p, qw) ∈ Sw. From the hypothesis

two conditions follow: (1) there is a run ρ1 of Tq over w with output µ such that its last

state is qw (2) there is a run ρ2 of Tqw over v with output κ such that its last state is q′. We

then construct ρ′ by concatenating ρ1 and ρ2 which ends in q′, and this proves the claim.

If w ∈ Σ<*>, <a ∈ Σ<, b> ∈ Σ>, let p, q, q′ ∈ Q, S be a set that contains (p, q), and let

ρ be the run of T ′S over <awb> with output (o^1, 1)µ(o^2, n+ 2) for some µ and o^1, o
^

2 ∈ Ω,

37

where n = |w|. Let S, S2, . . . , Sn+2, Sn+3 be the states of ρ in order, and suppose there is a

pair (p, q′) ∈ Sn+3. Our goal is to prove that there is a run ρ′ of Tq over <awb> with output

(o^1, 1)µ(o^2, n+ 2) that ends in q′. Let (S2, T) be the second configuration of ρ. From the

construction of δ, there exist q2, qn+2 ∈ Q and γ ∈ Γ such that (qn+2, b>, o^2, γ, qn+3) ∈ ∆,

(p, γ, q2) ∈ T and (q2, qn+2) ∈ Sn+2. Since w is well-nested, this T could only have been

pushed after a step in the run with label (<a, o^1), which implies that (q, <a, o^1, q2, γ) ∈ ∆.

This, in turn, means that (q2, q2) ∈ S2. Let us consider the subrun ρ[2, n + 2〉, which is

also a run of T ′S2
over w with output µ that ends in Sn+2 modulo the common stack suffix

T . We now have that (q2, q2) ∈ S2 and (q2, qn+2) ∈ Sn+2, and so, from the hypothesis

it follows that there is a run ρ′′ of Tq2 over w with output µ and ending state qn+2. In

a similar fashion as in the previous claim, we modify the run slightly to obtain one that

starts and ends on the stack γ. This new run can be easily extended with the transitions

(q, <a, o^1, q2, γ), (qn+2, b>, o^2, γ, qn+3) ∈ ∆, and as a result, we obtain a run ρ′ of Tq that

fulfils the conditions of the claim. �

Now, let w be a well nested word and let µ ∈ JT ′K(w). Let ρ be a run of T ′ over

w with output µ that ends in accepting state F , and let p∗ ∈ I and q∗ ∈ F be such that

(p∗, p∗) ∈ I and (p∗, q∗) ∈ F . Note that T ′ = T ′SI
, and by using the previous claim with

p = q = p∗ and q′ = q∗, we obtain that there is a run of Tp∗ over w with output µ that ends

in state in q∗. Clearly, this is also a run of T , so we obtain that µ ∈ JTK(w). This proves

that JT ′K(w) ⊆ JTK(w).

We conclude that JTK(w) = JT ′K(w) for every well-nested word w. �

3.4. Results and discussion

In this chapter, we are interested in the following streaming enumeration problem for

a class C of VPAnn (e.g. I/O-deterministic VPAnn).

38

Problem: ENUMVPANN[C]

Input: A VPAnn T ∈ C and w ∈ Σ<*>

Output: Enumerate JTK(w)

The main result of the chapter is that for the class of I/O-unambiguous VPAnn, the stream-

ing full-enumeration version of this problem can be solved efficiently.

Theorem 3.1. The streaming full-enumeration problem of ENUMVPANN for I/O-

unambiguous VPAnn can be solved with update-timeO(|Q|2|∆|) and output-linear delay.

For the class of all VPAnn, it can be solved with update-time O(2|Q|
2|∆|) and output-

linear delay.

The general case is basically a consequence of Proposition 3.2 and the enumeration

algorithm for I/O-unambiguous VPAnn. For both cases, if the VPAnn is fixed (i.e., in data

complexity), then the update-time of the streaming algorithm is constant. In Sections 3.5

and 3.6, we present this algorithm. For the rest of this section, we discuss some further

details of this result.

∆-enumeration. The natural question is how we move from full-enumeration to ∆-

enumeration. In fact, we can have ∆-enumeration with a slight loss of efficiency by solv-

ing the full-enumeration problem. Specifically, we can show that for any I/O-unambiguous

VPAnn T there is an I/O-unambiguous VPAnn T ′ of linear size with respect to |T| that only

outputs new results at each position. Then combining this construction with the algorithm

of Theorem 3.1, we derive the following algorithm for ∆-enumeration of VPAnn.

Theorem 3.2. The streaming ∆-enumeration problem of ENUMVPANN for I/O-unambiguous

VPAnn can be solved with update-time O(|Q|2|∆|) and output-linear delay. For the gen-

eral class of VPAnn, it can be solved with update-timeO(2|Q|
2|∆|) and output-linear delay.

PROOF. The proof of the theorem is a consequence of Theorem 3.1 and the following

lemma.

39

Lemma 3.1. For every I/O-unambiguous VPAnn T there exists an I/O-unambiguous

VPAnn T ′ such that JT ′K(w) = JTK(w) \
⋃
i<|w|JTK(w[1, i]) for every w ∈ Σ<*>. Further-

more, the size of T ′ is linear in the size of T .

Let T = (Q,Σ,Γ,Ω,∆, I, F) be an I/O-unambiguous VPAnn. We construct a VPAnn

T ′ = (Q′,Σ,Γ,Ω,∆′, I, F ′) such that Q′ = Q× {1, 2}, I ′ = I × {1}, F ′ = F × {1} and

∆′ is as follows:

∆′ = {((p, 1), <a, o^, (q, 1), γ), ((p, 2), <a, o^, (q, 1), γ) | (p, <a, o^, q, γ) ∈ ∆} ∪

{((p, 1), <a, (q, 1), γ), ((p, 2), <a, (q, 2), γ) | (p, <a, q, γ) ∈ ∆ where p 6∈ F} ∪

{((p, 1), <a, (q, 2), γ), ((p, 2), <a, (q, 2), γ) | (p, <a, q, γ) ∈ ∆ where p ∈ F} ∪

{((p, 1), a>, o^, γ, (q, 1)), ((p, 2), a>, o^, γ, (q, 1)) | (p, a>, o^, γ, q) ∈ ∆} ∪

{((p, 1), a>, γ, (q, 1)), ((p, 2), a>, γ, (q, 2)) | (p, a>, γ, q) ∈ ∆ where p 6∈ F} ∪

{((p, 1), a>, γ, (q, 2)), ((p, 2), a>, γ, (q, 2)) | (p, a>, γ, q) ∈ ∆ where p ∈ F} ∪

{((p, 1), a, o^, (q, 1)), ((p, 2), a, o^, (q, 1)) | (p, a, o^, q) ∈ ∆} ∪

{((p, 1), a, (q, 1)), ((p, 2), a, (q, 2)) | (p, <a, q) ∈ ∆ where p 6∈ F} ∪

{((p, 1), a, (q, 2)), ((p, 2), a, (q, 2)) | (p, <a, q) ∈ ∆ where p ∈ F}

The idea behind this construction is to separate the VPAnn in two halves. Each run

starts in the first half (marked 1) and once it reaches a final state, it changes into the second

half (marked 2). The run then stays on the second half until it sees an output symbol that

extends the current output, upon which it returns to the first half. It is straightforward to

see that JT ′K(w) = JTK(w) \
⋃
i<|w|JTK(w[1, i〉).

To show that T ′ is I/O-unambiguous, consider a w ∈ Σ<*>. Let µ ∈ JT ′K(w) and

consider two accepting runs ρ1 and ρ2 such that out(ρ1) = out(ρ2) = µ. Let us build

a run ρ of T over w by replacing each state (q, k) in ρ1 by q. Note that starting from ρ2

renders the same run because they have the same output and T is I/O-unambiguous. This

40

implies that ρ1 = ((q1, `1), σ1)
b1−→ · · · bn−→ ((qn+1, `n+1), σn+1) and ρ2 = ((q1, k1), σ1)

b1−→

· · · bn−→ ((qn+1, kn+1), σn+1) for some qi, σi and bi. Note that `1 = k1 = 1, and suppose

there is some i for which `i = ki and `i+1 6= ki+1. This is immediately false from the

construction above since from any transition of ∆ that is from state p, only two transitions

are included in ∆′: one from (p, 1) and one from (p, 2). This implies that ρ1 = ρ2 so T ′ is

I/O-unambiguous. �

We could have considered a more general definition of VPAnn to produce outputs

for prefix-nested words. This would be desirable for having some sort of earliest query

answering (Gauwin et al., 2009b) which is important in practical scenarios. We remark

that the algorithm of Theorem 3.1 can be extended for this case at the cost of making the

presentation more complicated. For the sake of presentation, we give a brief idea of how

to handle this extension after the main part of Section 3.6.

Space lower bounds of evaluating a VPAnn. This last subsection deals with the space

used by the streaming evaluation algorithm of Theorem 3.1. Indeed, this algorithm could

use linear space in the worst case. In the following, we explore some lower bounds in

the space needed by any algorithm and show that this bound is tight for a certain type of

VPAnn.

To study the minimum number of bits needed to solve ENUMVPANN we need to in-

troduce some definitions. Fix a VPAnn T and w ∈ prefix(Σ<*>). Let outputweight(T , w)

be the number of positions less than |w| that appear in some output of JTK(w · w′) for

some w ·w′ ∈ Σ<*>. Furthermore, for a well-nested word u let depth(u) be the maximum

number of nesting pairs inside u. Formally, depth(u) = 0 for u ∈ Σ|∗, depth(u1 · u2) =

max{depth(u1), depth(u2)}, and depth(<a ·u ·b>) = depth(u)+1. For w ∈ prefix(Σ<*>),

we define depth(w) = min{depth(w′) | w′ ∈ Σ<*> and w is a prefix of w′}. Below, we

provide some worst-case space lower bounds for ENUMVPANN that are dependent on

outputweight(T , w) and depth(w).

41

PROPOSITION 3.3. (a) There exists a VPAnn T1 such that every streaming evaluation

algorithm for ENUMVPANN with input T1 and S requires Ω(depth(S[1, n])) bits of space.

(b) There exists a VPAnn T2 such that every streaming evaluation algorithm for ENUMV-

PANN with input T2 and S requires Ω(outputweight(T2,S[1, n])) bits of space.

PROOF. (a) The existence and lower bound for T1 is a corollary of Theorem 4.5

in (Bar-Yossef et al., 2007). The proof of this result implies that for the XPath query

Q = //a[b and c], any streaming algorithm that verifies if an XML document matches

Q (the problem BOOLEVALQ) and any integer r ≥ 1, there exists a document of depth at

most r + C, where C is a constant value, on which the algorithm requires Ω(r) bits of

space.

The VPAnn T1 is shown in Figure 3.3a. It can simulate the query Q for a direct

mapping ν of the documents that are constructed in (Bar-Yossef et al., 2007), where

ν(〈a〉) = <a, ν(〈/a〉) = a>, ν(〈b/〉) = b, and ν(〈c/〉) = c. Note that for any well-nested

document w the set JTK(w) is either empty or {ε}. Now suppose there is a streaming

evaluation algorithm E that solves ENUMVPANN. We can solve BOOLEVALQ by receiv-

ing an XML stream S, and running E with input T while applying the mapping ν to each

character. Let w be the resulting string. At the end of the stream, we enumerate the set

JTK(w) and it will enumerate the output ε iff S matches Q. We conclude that E runs in

Ω(r) space.

(b) The existence and lower bound for T2 uses the main ideas of the proof of Theorem

1 in (Bar-Yossef et al., 2005). Here, the authors describe a set-computing communication

complexity problem. In the problem P , Alice and Bob compute a two-argument function

p(·, ·), defined as follows. Alice’s input is a subset A ⊆ {1, . . . , k}, Bob’s input is a bit

β ∈ {0, 1}, and p(A, β) is defined to be A, if β = 1, and ∅ otherwise. Proposition 1

in (Bar-Yossef et al., 2005) proves that the one-way communication complexity of P is

at least k.

42

q0 q1

q2

q3

q4 q5

∗ ∗

∗

∗

∗ ∗

<a/A
b

c

c

b

a>,A

(a) T1

q0 q1

a

b : x

$

(b) T2

Figure 3.3. VPAnn used in the proof of Proposition 3.3. On T1, a loop
over a node p labeled by ∗ represents the four transitions (p, <a, p,X),
(p, a>,X, p), (p, b, p) and (p, c, p).

Let T2 = (Q,Σ,Γ,Ω,∆, I, F) be a VPAnn such that Σ| = {a, b, $}, Ω = {x},

and Q, ∆, I , F be as presented in Figure 3.3b. Let w ∈ (Σ|)∗ be a word such that

i1 < i2 < . . . < ik ≤ |w| are all positions of w where w[i`] = b for every ` ≤ k. Then one

can check that T2 defines the following function:

JT2K(w) =

{(x, i1) . . . (x, ik)} if w ends in $

∅ otherwise.

Consider an arbitrary algorithm E that solves ENUMVPANN with input T2. We will

now present a reduction that creates a protocol for P which makes use of the algorithm

E . Here, Alice receives the set A and generates a word w of size k such that w[i] = b

if i ∈ A and w[i] = a otherwise. Alice then executes E on input T2 and w as the first k

characters of a stream. She sends the state of the algorithm to Bob, who receives the bit

β, and does the following: If β = 1 he continues running E as if the last character of the

input was $. If β = 0, he stops executing E immediately. In either case, the output given

by E contains all the information necessary to compute the set p(A, β), so the reduction

is correct. This proves that E requires at least k bits for an input of size less than k, and

so E for any n ≥ 1, requires at least n bits of space in a worst-case stream S, which is in

Ω(outputweight(T2, S[1, n])). �

43

In (Bar-Yossef et al., 2005, 2007), the authors provide lower bounds on the amount of

space needed for evaluating XPath in terms of the nesting and the concurrency (see (Bar-

Yossef et al., 2005) for a definition). One can show that the output weight of T and w is

always above the concurrency of T and w. Despite this, one can check that both notions

coincide for the space lower bound given in Proposition 3.3.

The previous results show that, in the worst case, any streaming evaluation algorithm

for VPAnn will require space of at least the depth of the document or the output weight.

To show that Theorem 3.1 is optimal in the worst-case, we need to consider a further

assumption of our VPAnn. We say that a VPAnn T is trimmed (Caralp, Reynier, & Talbot,

2015) if for every w ∈ prefix(Σ<*>) and every (partial) run ρ of T over w, there exists w′

and an accepting run ρ′ of T over w · w′ such that ρ is a prefix of ρ′. This notion is the

analog of trimmed non-deterministic automata. Similarly to Proposition 3.2, one can show

that for every VPAnn T there exists a trimmed I/O-deterministic VPAnn T ′ equivalent to

T (i.e., by extending the construction in (Caralp et al., 2015) to VPAnn). The next result

shows that, if the input to ENUMVPANN is a trimmed I/O-unambiguous VPAnn, then the

memory footprint is at most the maximum between the depth and output weight of the

input.

PROPOSITION 3.4. The streaming enumeration problem of ENUMVPANN for the

class of trimmed I/O-unambiguous VPAnn can be solved with update-time O(|Q|2|∆|),

output-linear delay, and

O(max{depth(S[1, n]), outputweight(T ,S[1, n])} × |Q|2|∆|) space for every stream S.

PROOF. Before reading this proof, it is important to note that the argument assumes

the understanding of Algorithm 2. Furthermore, this proof uses the notation introduce in

Section 3.6.

First of all, note that the time bounds are implied by Theorem 3.1, so we will restrict to

prove the space bounds. Algorithm 2 has an update phase and an enumeration phase, and

the enumeration phase only processes the data structure that was built on the update phase,

44

using at most linear extra space, as is explained in Section 3.5. As such, we will prove that

Algorithm 2 on input (T , w) uses O((depth(w) + outputweight(T , w)) × |Q|2|∆|) space

at every point in its execution, which implies the statement of the proposition, where

w = S[1, n] for some stream S and n.

As it was explained in Section 3.6, Algorithm 2 uses a hash table S, and a stack T

that stores hash tables. The size of the stack at each point is bounded depth(w), and the

size of each hash table is bounded by |Q|2|Γ|, so the size of S and T combined is in

O(depth(w)|Q|2|∆|). The rest of the space used is related to the ε-ECS D, which we will

now bound by O(outputweight(T , w[1, k])|Q|2|∆|) at each step k.

For every step k of the algorithm, consider an ε-ECS Dtrim
k which is composed solely

of the nodes that are reachable from of the ones stored in Sk, or the ones stored in some

hash table in T k. A simple induction argument on k shows that the rest of the nodes

in D can be discarded with no effect over the correctness of the algorithm, so they are

not considered in the memory used by it. Therefore, proving that at each step |Dtrim
k | ∈

O(outputweight(T , w[1, k])|Q|2|∆|) is enough to complete the proof.

Let I be the set of positions less than k that appear in some output of JTK(w[1, k] ·w′)

for some w ·w′ ∈ prefix(Σ<*>). We now refer to Lemma 3.2 since it implies that for each

node v stored in Sk or the topmost hash table in T k, each sequence in ŁD(v) corresponds

to at least one valid run of T over w[1, k], and since T is trimmed, each one of these runs

is part of an accepting run of T over w[1, k] ·w′, for some word w′. Therefore, each of the

positions that appear in some of these sets is in I. Furthermore, we can use this lemma to

characterize the positions in the rest of the hash tables in T k, since appending any close

symbol a> to w[1, k] will make the algorithm pop an element from T , which will make the

next hash table the topmost. This argument can be extended to any of the hash tables in T k,

so in all, Lemma 3.2 implies that all of the positions that appear in some non-empty leaf in

Dtrim
k are in I. Theorem 3.1 implies that the set of these positions corresponds exactly to

I, since if there was any position in I missing from the leaves in D, the algorithm would

not be correct.

45

Lastly, we will show that |Dtrim
k | ≤ |I| × |Q|2|∆| × d, where d is a constant. Towards

this goal, we will bound the number of ε-leaves, non-empty leaves, and product nodes

by O(|I| × |Q|2|∆|) independently. Union nodes can be bounded by counting the other

types of nodes: The only cases where a union node is created are (1) in line 38, only after

a product node had been created, (2) during the creation of a product node (as described

in Theorem 3.4), (3) in line 50, but only whenever one of the previous lines had created

either a product node or a non-empty leaf node, and (4) in line 16, which only happens

once at the end of the update phase, and iterates by nodes in S. Thus, the number of

union nodes created at this for loop at most |Dtrim
k |. The number of ε-nodes is at most one,

owing to Theorem 3.4, since its proof shows that at the end of step k, each of the nodes

in Dtrim
k is ε-safe. The number of non-empty leaves can be straightforwardly shown to be

O(|I| × |Q|2|∆|) since each of these leaves was introduced in some step in I, and in each

one of these steps, the number of operations that the algorithm does is in O(|Q|2|∆|).

To show a bound over the number of product nodes, consider a slight modification of

Algorithm 2: product nodes that are created in line 48 are labeled with the step k in which

the algorithm is at the moment. Now, for a set of nodes A let Dtrim
A be the ε-ECS that is

obtained by removing all of the nodes that are not reachable from some node in A from

D. Let IA be the set of positions that appear in some non-empty leaf node in Dtrim
A , and let

PA be the set of step labels that appear in some product node in Dtrim
A excluding the steps

in IA. Also, let Vk be the the set of nodes in Dtrim
k . We will show by induction on k that

|PA| ≤ |IA| − 1 for any A ⊆ Vk which contains at least one node that is not an ε-node.

Consider any set A ⊆ Vk. The first observation we make here is that we can partition the

nodes in A to a collection {AH} of sets of nodes depending on the hash table H they are

reachable from, given that they are in Dtrim
k . Let QA = PA ∪ IA. From Lemma 3.2 we

get that for two different sets AH1 and AH2 in the collection, the sets QH1 and QH2 are

disjoint. Therefore, in step k, if the algorithm enters CLOSESTEP, we only need to focus

on the set AS , and if the algorithm enters OPENSTEP on the set and ATk (note that in this

case, Sk is composed only of ε-nodes). The rest of the hash tables were reachable on a

previous step, so the inequality can be reached by adding up the inequalities that held in

46

those steps. First, note that if none of the product nodes in A were created in step k, then

we can consider the set B of nodes reachable from A that were created in a previous step

and notice that PA = PB and IB ⊆ IA, so the statement follows since B ⊆ Vk−1. Also,

note that if the algorithm in step k enters OPENSTEP, all of the product nodes created in

this step are directly connected to a non-ε leaf created in this same step, so the statement

also follows. From this point on, we can assume that the algorithm enters CLOSESTEP on

step k, and all of the nodes in A are reachable from some node in Sk, and there is at least

one product node in A that was created in step k. Let P be the set of product nodes in A

that were created on step k. Consider the span currlevel(k) = [j, k〉. The prod operation

in line 48 either creates a new product node, or makes v reference a node that already

existed in Sk−1 or the topmost table in T j . Furthermore, if a product node is created in

line 48, then Theorem 3.4 tells us that it must be connected to a node in Sk−1 that is not an

ε-node, and to a node in the topmost table in T j that is also not an ε-node. Consider now

the set of nodes B that is made up of (1) nodes in A that are reachable from Sk−1 and (2)

nodes in Sk−1 that are connected to a product node in P . Consider also the set of nodes

C that is made up of (1) nodes in A that are reachable from the topmost table in T j , and

nodes in the topmost table in T j that are connected to a node in P . Note that both sets

B and C contain a non-ε node, and are composed of nodes created in a previous step, so

assume that |PB| ≤ |IB| − 1 and that |PC | ≤ |IC | − 1. It can be seen that every node in

Dtrim
A is either in B, C, or was created on step k, so we get that PA = PB ∪ PC ∪ {k} and

IA ⊇ IB ∪ IC . From Lemma 3.2 we get that QB and QC are disjoint, and putting these

facts to together gives us that |PA| = |PB|+ |PC |+ 1 ≤ |IB|+ |IC | − 1 ≤ |IA| − 1.

Having proven this statement, we can deduce that the number of product nodes inDtrim
k

is inO(|I|× |Q|2|∆|) since the number of steps where they are created is bounded by |I|.

Therefore, |Dtrim
k | ≤ |I| × |Q|2|∆| × d, for some constant d. This concludes the proof.

� �

Unfortunately, the algorithm provided in Theorem 3.1 is not instance optimal, in the

sense of using the lowest number of bits needed for each specific VPAnn. Specifically,

47

there exist VPAnn for which only logarithmic space in outputweight(T , w) is enough for

any stream S . For example, let o^ be any output symbol and consider a VPAnn T for

which the output set is JTK(w) = {(o^, i) | 1 ≤ i ≤ |w|} if the last symbol in w is $

and the empty set otherwise. Clearly, the output weight of any w with respect to T is

linear in |w|. However, one could design a streaming evaluation algorithm that has only a

counter that stores the length of the input so far and produces the correct output set after

reading the last symbol in w. The enumeration phase can easily be done with output-

linear delay (i.e., by counting from 1 to |w|). Furthermore, note that an instance optimal

algorithm for the streaming enumeration problem of VPAnn will imply a solution to the

weak evaluation problem, stated by Segoufin and Vianu (Segoufin & Vianu, 2002), which

is an open problem in the area (see (Barloy, Murlak, & Paperman, 2021) for some recent

results). We leave the study of instance optimal streaming evaluation algorithms for future

work.

3.5. Enumerable compact sets: a data structure for output-linear delay

This section presents a data structure, called Enumerable Compact Set with Shifts

(Shift-ECS), which is the cornerstone of our enumeration algorithm for VPAnn. This data

structure is strongly inspired by the work in (Amarilli et al., 2017, 2019a). Indeed, Shift-

ECS can be considered a refinement of the d-DNNF circuits used in (Amarilli et al., 2017)

or of the set circuits used in (Amarilli et al., 2019a). Several papers (Olteanu & Závodný,

2015; Amarilli et al., 2017; Amarilli, Bourhis, Mengel, & Niewerth, 2019b; Torunczyk,

2020) have considered circuits-like structures for encoding outputs and enumerate them

with constant delay. The novelty of ECS is twofold. First, we use ECS for solving a

streaming evaluation problem. Although people have studied streaming query evaluation

with enumeration before (Idris et al., 2017; Berkholz et al., 2017), this is the first work that

uses a circuit-like data structure in an online setting. Second and more important, there

is a difference in performance if we compare ECS to the previous approaches. In offline

48

evaluation, constant-delay algorithms usually create an initial circuit from the input, mak-

ing several passes over the structure, building indices, and then running the enumeration

process. Given time restrictions for the online evaluation, we cannot create a circuit and

do this linear-time preprocessing before enumerating. On the contrary, we must extend the

circuit-like data structure for each data item in constant time and then be ready to start the

enumeration. This requirement justifies the need for a new data structure for represent-

ing and enumerating outputs. Therefore, ECS differs from previous proposals because

each operation must take constant time, and we can run the enumeration process with

output-linear delay, at any time and without any further preprocessing. In the following,

we present Shift-ECS step-by-step to use them later in the next section.

Let Ω be a (possibly infinite) alphabet. We define an Enumerable Compact Set with

Shifts (Shift-ECS) as a tuple:

D = (Ω, V, `, r, λ)

such that V is a finite set of nodes, ` : V → V and r : V → V are the left and right partial

functions, and λ : V → Ω ∪ {∪,�} is a labeling function. For every node v ∈ V , both

`(v) and r(v) are defined if λ(v) ∈ {∪,�}, and neither is defined otherwise. Further,

we assume that the directed graph (V, {(v, `(v)), (v, r(v)) | v ∈ V }) is acyclic. Note

how this implies that nodes labeled by Ω are bottom nodes in the DAG and nodes labelled

by ∪ or � are inner nodes. We will use the terms inner and bottom to refer to such

nodes, respectively. Furthermore, we say that v is a product node if λ(v) = �, and a

union node if λ(v) = ∪. We define the size of D as |D| = |V |. For each node v in D,

we associate a set of words JDK(v) recursively as follows: (1) JDK(v) = {a} whenever

λ(v) = a ∈ Ω, (2) JDK(v) = JDK(`(v)) ∪ JDK(r(v)) whenever λ(v) = ∪, and (3)

JDK(v) = JDK(`(v)) · JDK(r(v)) whenever λ(v) = �, where L1 · L2 = {w1 · w2 | w1 ∈

L1 and w2 ∈ L2}.

Since the size of the set JDK(v) can be exponential with respect to |D|, we say that D

is a compact representation of JDK(v) for any v ∈ V . Although JDK(v) is very large, the

49

goal is to enumerate all of its elements efficiently. Specifically, we consider the following

problem:

Problem: ENUM-ECS

Input: A Shift-ECS D = (Ω, V, `, r, λ) and v ∈ V .

Output: Enumerate the set JDK(v) without repetitions.

Additionally, we want to solve ENUM-ECS with output-linear delay. A reasonable strat-

egy to enumerate JDK(v) is to do a sequence of traversals on the structure, each of which

builds a different output from the set. However, to be able to do this without repetitions

and output-linear delay, we need to guarantee two conditions: first that one can obtain

every output from D in only one way and, second, that union nodes are close to a bottom

node or a product node, in the sense that we can always reach one of them in a bounded

number of steps. To ensure that these conditions hold, we impose two restrictions on an

ECS:

(i) We say that D is duplicate-free if D satisfies the following two properties: (1)

for every union node v it holds that JDK(`(v)) and JDK(r(v)) are disjoint, and

(2) for every product node v and for every w ∈ JDK(v), there exists a unique

way to decompose w = w1 · w2 such that w1 ∈ JDK(`(v)) and w2 ∈ JDK(r(v)).

(ii) We define the notion of k-bounded Shift-ECS as follows. Given a Shift-ECS

D, define the (left) output-depth of a node v ∈ V , denoted by odepthD(v),

recursively as follows: odepthD(v) = 0 whenever λ(v) ∈ Ω or λ(v) = �, and

odepthD(v) = odepthD(`(v)) + 1 whenever λ(v) = ∪. Then, for k ∈ N we say

that D is k-bounded if odepthD(v) ≤ k for all v ∈ V .

Given the definition of output depth, we say that v is an output node of D if v is a

bottom node or a product node. Note that ifD only has output nodes, then it is 0-bounded,

and one can easily check that JDK(v) can be enumerated with output-linear delay. Indeed,

for a fixed k the same happens with every duplicate-free and k-bounded Shift-ECS.

50

PROPOSITION 3.5. Fix k ∈ N. Let D = (Ω, V, `, r, λ) be a duplicate-free and k-

bounded Shift-ECS. Then one can enumerate the set JDK(v) with output-linear delay for

any v ∈ V .

PROOF. Let D = (Ω, V, `, r, λ) be a duplicate-free and k-bounded Shift-ECS. The

algorithm that we present is a depth-first traversal of the DAG, done in a recursive fashion

to ensure that after retrieving some output w, the next one w′ can be printed in O(k ·

(|w| + |w′|)) time. We will show this easier bound first, and then show how this implies

O(k′ · |w′|) delay by the end of the proof. The entire procedure is detailed in Algorithm 1.

To simplify the presentation of the algorithm, we use the interface of an iterator that,

given a node v, it contains all information and methods to enumerate the outputs JDK(v).

Specifically, an iterator τ must implement the following three methods:

CREATE(v)→ τ τ .NEXT→ b τ .PRINT→∅

where v is a node, b is either true or false, and ∅ means “no output”. The first method,

CREATE, receives a node v and creates an iterator τ of the type of v. We will implement

three types of iterators, one for each node type: bottom, product, and union nodes. The

second method, τ .NEXT, moves the iterator to the next output, returning true if, and only

if, there is an output to print. Then the last method, τ .PRINT, write the current output

pointed by τ to the output registers. We assume that, after creating an iterator τ , one

must first call τ .NEXT to move to the first output before printing. Furthermore, if τ .NEXT

outputs false, then the behavior of τ .PRINT is undefined. Note that one can call τ .PRINT

several times, without calling τ .NEXT, and the iterator will write the same output each

time in the output registers.

Assume we can implement the iterator interface for each node type. Then the proce-

dure ENUMERATE(v) in Algorithm 1 (lines 61-64) shows how to enumerate the set JDK(v)

51

Algorithm 1 Enumeration over a node u from some ECS D = (Ω, V, `, r, λ).
1: . Bottom node iterator τΩ

2: procedure CREATE(v) . Assume
λ(v) ∈ Ω

3: u← v
4: hasnext← true
5:
6: procedure NEXT
7: if hasnext = true then
8: hasnext← false
9: return true

10: return false
11:
12: procedure PRINT
13: print(λ(u))

14:
15: . Product node iterator τ�
16: procedure CREATE(v) . Assume

λ(v) = �
17: u← v
18: τ` ← CREATE(`(u))
19: τ`.NEXT
20: τr ← CREATE(r(u))

21:
22: procedure NEXT
23: if τr.NEXT = false then
24: if τ`.NEXT = false then
25: return false
26: τr ← CREATE(r(u))
27: τr.NEXT

28: return true
29:
30: procedure PRINT
31: τ`.PRINT
32: τr.PRINT

33: . Union node iterator τ∪
34: procedure CREATE(v) . Assume

λ(v) = ∪
35: St← push(St, v)
36: St← TRAVERSE(St)
37: τ ← CREATE(top(St))

38:
39: procedure NEXT
40: if τ .NEXT = false then
41: St← pop(St)
42: if length(St) = 0 then
43: return false
44: else if λ(top(St)) = ∪ then
45: St← TRAVERSE(St)

46: τ ← CREATE(top(St))
47: τ .NEXT
48: return true
49:
50: procedure PRINT
51: τ .PRINT
52:
53: procedure TRAVERSE(St)
54: while λ(top(St)) = ∪ do
55: u← top(St)
56: St← pop(St)
57: St← push(St, r(u))
58: St← push(St, `(u))

59: return St
60:
61: procedure ENUMERATE(v)
62: τ ← CREATE(v)
63: while τ .NEXT = true do
64: τ .PRINT

by using an iterator τ for v. In the following, we show how to implement the iterator inter-

face for each node type and how the size of the following output bounds the delay between

two outcomes.

52

We start by presenting the iterator τΩ for a bottom node v (lines 1-13), called a bottom

node iterator. We assume that each τΩ has internally two values u and hasnext, where

u is a reference to v and hasnext is a boolean variable. The purpose of a bottom node

iterator is only to print λ(u). For this goal, when we create τΩ, we initialize u equal to v

and hasnext = true (lines 3-4). Then, when we call τΩ .NEXT for the first time, we swap

hasnext from true to false and output true (i.e., there is one output ready to be returned).

Then any following call to τΩ .NEXT will be false (lines 6-10). Finally, the τΩ .PRINT

writes the value λ(u) to the output registers (lines 12-13). Here, we assume the existence

of a method print on the RAM model for writing to the output registers.

For a product node, we present a product node iterator τ� in Algorithm 1 (lines 15-

32). This iterator receives a product node v with λ(v) = � and stores a reference of v,

called u, and two iterators τ` and τr, for iterating through the left and right nodes `(u)

and r(u), respectively. The CREATE method initializes u with v, creates the iterators τ`

and τr, and calls τ`.NEXT to be prepared for the first call of τ� .NEXT (lines 16-20). The

idea of τ� .NEXT is to fix one output for the left node `(u) and iterate over all outputs

of r(u) (lines 22-28). When we stop enumerating all outputs of JDK(r(u)), we move to

the next output of τ`, and iterate again over all JDK(r(u)) (lines 24-27). For printing, we

recursively call first the printing method of τ`, and then the one of τr (lines 30-32).

The most involved case is the union node iterator τ∪ (lines 33-59). Similarly to a

product node iterator, it receives a union node v with λ(v) = ∪ and keeps a stack of

nodes St and an iterator τ . We assume the standard implementation of a stack with the

native methods push, pop, top, and length over stacks – the first three define the standard

operations over stacks, and length counts the elements in it. The purpose of the stack is

to perform a depth-first-search traversal of all union nodes below v, reaching all possible

output nodes u such that there is a path of union nodes between v and u. If the top node of

St is an output node, then τ is an iterator for that node, which enumerates all their outputs.

For performing the depth-first-search traversal of union nodes, we use the auxiliary

method TRAVERSE(St) (lines 53-59). While the top node u in St is a union node, it pops

53

1.

a3 a4

∪a2

∪ a5

∪a1

∪ a6

∪ 2.

a3 a4

∪a2

∪ a5

∪a1

∪ a6

∪ 3.

a3 a4

∪a2

∪ a5

∪a1

∪ a6

∪ 4.

a3 a4

∪a2

∪ a5

∪a1

∪ a6

∪

Figure 3.4. Evolution of the stack St (represented by dashed arrows)
for an iterator over the topmost union node in the figure. The under-
lying ECS contains only union nodes and six bottom nodes. The first
figure is St after calling St ← push(St, v), the second is after calling
St ← TRAVERSE(St). The last two figures represent successive calls to
pop(St), St← TRAVERSE(St).

u and pushes its right and left nodes in that order. This method will eventually reach an

output node (i.e., a non-union node) at the top of the stack and end. It is important to note

that TRAVERSE(St) takesO(k)-steps, given that the ECS is k-bounded. Then if k is fixed,

the TRAVERSE procedure takes constant time. In Figure 3.4, we illustrate the evolution of

a stack St inside a union node iterator when we call TRAVERSE(St) several times.

The methods of a union node iterator τ∪ are then straightforward. For CREATE (lines

34-37), we push v into St (line 35) and traverse St, finding the first rightmost output node

from v (line 36). Then we build the iterator τ of this output node for being ready to start

enumerating their outputs (line 37). For NEXT, we consume all outputs by calling τ .NEXT

(line 40). When there are no more outputs (lines 41-47), we pop the top node from St and

check if the stack is empty or not (lines 41-42). If this is the case, there are no more outputs

and we output false. Instead, if St is non-empty but the top node top(St) is a union node,

we apply the TRAVERSE method for finding the rightmost output node from top(St) (lines

44-45). When the procedure is done, we know that the top node is an output node, and

then we create an iterator and move to its first output (lines 46-47). For PRINT, we call the

print method of τ which is ready to write the current output (lines 50-51).

54

For proving the correctness of the enumeration procedure, since D is duplicate-free,

one can verify that ENUMERATE(v) in Algorithm 1 enumerates all the set JDK(v), one by

one, and without repetitions. For the delay between outputs, since D is k-bounded, it is

straightforward to prove by induction that, if w0 is the first output, then:

• CREATE(v) takes time O(k · |w0|),

• NEXT takes time O(k · |w0|) for the first call, and O(k · |w| + |w′|) for the next

call where w and w′ are the previous and next outputs, respectively, and

• PRINT takes time O(k · |w|) where w is the current output to be printed.

Overall, ENUMERATE(v) in Algorithm 1 have delay O(k · (|w| + |w′|)) to write the next

output w′ in the output register, after printing the previous output w.

We end by pointing out that the existence of an enumeration algorithm E with delay

O(k · (|w| + |w′|)) between any consecutive outputs w and w′, implies the existence of

an enumeration algorithm E ′ with output-linear delay as defined in Section 3.2. We start

noting that k is a fixed value and then the delay of E only depends on |w| + |w′|. For

depending only on the next output w′, one can perform the following strategy for E ′: start

by running E , enumerate the first outputw0, proceed k·|w0|more steps of E , stop, and print

the separator symbol #. Then continue running E to prepare the next output w1, proceed

k|w1| more steps, stop, and print the separator symbol #. By repeating this enumeration

process, one can verify that the delay between the i-th output wi and the (i+ 1)-th output

wi+1 is O(|wi+1|). Therefore, E ′ has output-linear delay. �

The enumeration algorithm above does not require any preprocessing over D. By this

proposition, from now we assume that all Shift-ECS are duplicate-free and k-bounded for

some fixed k.

Operations allowed by an ECS. The next step is to provide a set of operations that allow

extending a Shift-ECS D while maintaining k-boundedness. Furthermore, we require

these operations to be fully-persistent: a data structure is called fully-persistent if every

55

version can be both accessed and modified (Driscoll, Sarnak, Sleator, & Tarjan, 1986a).

In other words, the previous version of the data structure is always available after each

operation. To satisfy the last requirement, the strategy will consist in extending D to D′

for each operation, by adding new nodes and maintaining the previous nodes unmodified.

Then LD′(v) = LD(v) for each node v ∈ V , and so, the data structure will be fully-

persistent.

Fix a Shift-ECSD = (Ω, V, `, r, λ). In the following, we say thatD′ = (Ω, V ′, `′, r′, λ′)

is an extension of D if, and only if, X ⊆ X′ for every X ∈ {V, `, r, λ}. Further, we write

op(I) → O to define the signature of an operation op where I is the input and O is the

output. Then for any a ∈ Ω and v1, . . . , v4 ∈ V , we define the operations:

add(D, a)→ (D′, v′) prod(D, v1, v2)→ (D′, v′) union(D, v3, v4)→ (D′, v′)

such that D′ is an extension of D and v′ ∈ V ′ \ V is a fresh node such that LD′(v′) = {a},

LD′(v′) = LD(v1) · LD(v2), and LD′(v′) = LD(v3) ∪ LD(v4), respectively. We assume

that the union and prod satisfy properties (1) and (2) of a duplicate-free Shift-ECS, namely,

LD(v1) and LD(v2) are disjoint and, for every w ∈ JDK(v3) ·JDK(v4), there exists a unique

way to decompose w = w1 · w2 such that w1 ∈ JDK(v3) and w2 ∈ JDK(v4).

Next, we show how to implement these operations, where the case of add and prod

are straightforward. For add(D, a) → (D′, v′) define V ′ := V ∪ {v′} and λ′(v′) = a.

One can easily check that ŁD′(v′) = {a} as expected. For prod(D, v1, v2) → (D′, v′)

we proceed in a similar way: define V ′ := V ∪ {v′}, `′(v′) := v1, r′(v′) = v2, and

λ′(v′) = �. Then ŁD′(v′) = JDK(v1) · JDK(v2). Furthermore, one can check that each

operation takes constant time, D′ is a valid Shift-ECS (i.e. duplicate-free and k-bounded),

and the operations are fully-persistent (i.e. the previous version D is available).

To define the union, we need to be a bit more careful to guarantee output-linear delay,

specifically, the k-bounded property. For v ∈ V , we say that v is safe if (1) odepthD(v) ≤

1, and (2) if odepthD(v) = 1, then odepthD(r(v)) ≤ 1. In other words, v is safe if either

v is an output node, or its left child is an output node and its right child is either an output

56

node or has output depth 1. Note that a leaf or a product node are safe nodes by definition

and, thus, the add and prod operations always produce safe nodes.

The strategy then is to show that, if v3 and v4 are safe nodes, then we can implement

the operation union(D, v3, v4) → (D′, v′) and produce a safe node v′. To reach this goal,

define (D′, v′) as follows:

• If v3 or v4 are output nodes then V ′ := V ∪ {v′} and λ(v′) := ∪. Moreover, if

v3 is the output node, then `′(v′) := v3 and r′(v′) := v4. Otherwise, we connect

`′(v′) := v4 and r′(v′) := v3.

• If v3 and v4 are not output nodes (i.e. both are union nodes), then V ′ := V ∪

{v′, u1, u2}, `′(v′) := `(v3), r′(v′) := u1, and λ′(v′) := ∪; `′(u1) := `(v4),

r′(u1) := u2, and λ′(u1) := ∪; `′(u2) := r(v3), r′(u2) := r(v4), and λ′(u2) :=

∪.

This gadget2 is depicted in Figure 3.5. This construction has several properties. First, one

can easily check that ŁD′(v′) = JDK(v1) ∪ JDK(v2) and so its semantics is well-defined.

Second, union can be computed in constant time in |D| given that we only need to add

three fresh nodes, and the operation is fully-persistent given that we connect them without

modifying the nodes of D. Third, the produced node v′ is safe in D′, although nodes u1

and u2 are not necessarily safe. Finally,D′ is 2-bounded wheneverD is 2-bounded. This is

straightforward to verify for the first case when v3 or v4 are output nodes. For the second

case (i.e., Figure 3.5), recall that v3 and v4 are safe nodes, which means that `(v3) and

`(v4) are output nodes, and then odepthD′(v
′) = odepthD′(u1) = 1. Further, given that v3

is safe, we know that odepthD(r(v3)) ≤ 1, so odepthD′(u2) ≤ 2. Given that the output

depths of all fresh nodes in D′ are bounded by 2 and D is 2-bounded, then we conclude

that D′ is 2-bounded as well.

By the previous discussion, if we start with a Shift-ECS D which is 2-bounded (or

empty) and we apply the add, prod, or union operators between safe nodes (which also

2Note that a similar trick was used in (Amarilli et al., 2017) for computing an index over a circuit.

57

`(v3) r(v3)

v3

`(v4) r(v4)

v4

u2

u1

v′

.

Figure 3.5. Gadget for union(D, v3, v4). Nodes v′, u1, u2, v3 and v4 are
labeled as ∪. Dashed and solid lines denote the mappings in `′ and r′

respectively.

produce safe nodes), then the result is 2-bounded as well. Finally, by Proposition 3.5, the

result can be enumerated with output-linear delay.

Theorem 3.3. The operations add, prod, and union require constant time and are

fully-persistent. Furthermore, if we start from an empty Shift-ECS D and apply add, prod,

or union operations over safe nodes, the partial results (D′, v′) satisfy that v′ is always a

safe node and the set ŁD′(v) can be enumerated with output-linear delay for every node v.

We want to remark that restricting the operations over safe nodes does not limit the

final user of the data structure. Indeed, since we will usually start from an empty Shift-

ECS and apply these operations over previously returned nodes, the whole algorithm will

always use safe nodes during its computation, satisfying the conditions of Theorem 3.3.

Extending ECS with ε-nodes. For technical reasons, our algorithm of the next section

needs a slight extension of Shift-ECS by allowing leaves that produce the empty string ε.

Let ε 6∈ Ω be a symbol representing the empty string (i.e. w · ε = ε · w = w). We define

an enumerable compact set with ε (called ε-ECS) as a tuple D = (Ω, V, `, r, λ) defined

identically to a Shift-ECS except that:

λ : V → Ω ∪ {∪,�, ε}

and λ(v) ∈ {∪,�} if, and only if, both `(v) and r(v) are defined. Further, JDK(v) = {ε}

whenever λ(v) = ε. The duplicate-free restriction is the same for ε-ECS and one has

58

to slightly extend k-boundedness to consider ε-nodes. However, to support the prod and

union operations in constant time and to maintain the k-boundedness invariant, we need to

extend the notion of safe nodes, called ε-safe, and the gadgets for prod and union. We sum-

marize all these details in the proof of the following theorem which is a straightforward

extension of Theorem 3.3.

Theorem 3.4. The operations add, prod, and union over ε-ECS take constant time and

are fully-persistent. Furthermore, if we start from an empty ε-ECSD and apply add, prod,

and union over ε-safe nodes, the partial results (D′, v′) satisfy that v′ is always an ε-safe

node and the set ŁD′(v) can be enumerated with output-linear delay for every node v.

PROOF. For dealing with ε-nodes, we need to revisit the notions of output depth, k-

bounded, and safeness. For the sake of presentation, it is simpler first to introduce the

notion of ε-safe nodes to then revisit all previous definitions. Specifically, for a given ε-

ECS D = (Ω, V, `, r, λ) we say that v ∈ V is ε-safe if it is exactly one of the following

situations:

(i) λ(v) = ε, or

(ii) λ(v) 6= ε, v is a safe node, and λ(u) 6= ε for any node u which is reachable from

v, or

(iii) λ(v) = ∪, λ(`(v)) = ε, and r(v) satisfies (ii).

In other words, ε can only occur as the left child of an ε-safe node or being the node itself.

From now on, we can assume that we will only work with ε-safe nodes as the input for

enumerating or for operating them with other (ε-safe) nodes. If this is the case, then the

enumeration with output-linear delay and the notions of output depth and k-boundedness

are similar to before. Therefore, we dedicate the rest of the proof to revisit the operations

prod and union when the inputs are ε-safe nodes (the add operation is straightforward

similar to the case without ε).

59

∪= v′a

v1

�
v2

ε r(v2)

∪= v′b

v2

�
v1

ε r(v1)

∪= v′c

ε union

∪

� v2

ε r(v2)

v1

ε r(v1)

Figure 3.6. Gadgets for prod as defined for an ε-ECS. Nodes v′a, v
′
b, and v′c

correspond to v′ as defined for cases (a), (b), and (c), respectively.

Assume v1 and v2 are ε-safe. Since both v1 and v2 may fall in one of three cases above,

we define prod(D, v1, v2) → (D′, v′) by separating into nine cases, of which the first six

are straightforward:

• If ε 6∈ LD(v1) and ε 6∈ LD(v2), we use the construction given for a regular

Shift-ECS.

• If ε 6∈ LD(v1) and λ(v2) = ε, we define v′ = v1, and D′ = D.

• If λ(v1) = ε and ε 6∈ LD(v2), we define v′ = v2, and D′ = D.

• If λ(v1) = ε and λ(v2) = ε, we define v′ = v1, and D′ = D.

• If λ(v1) = ε and v2 is in case (iii), we define v′ = v2, and D′ = D.

• If v1 is in case (iii) and λ(v2) = ε, we define v′ = v1, and D′ = D.

The other three cases are more involved and they are presented graphically in Fig-

ure 3.6. Formally, they are defined as follows:

(a) If ε 6∈ LD(v1) and v2 is in case (iii), then V ′ = V ∪ {v′, v′′}, `′(v′) = v′′,

r′(v′) = v1, `(v′′) = v1, r(v′′) = r(v2), λ′(v′) = ∪ and λ′(v′′) = �.

(b) If v1 is in case (iii) and ε 6∈ LD(v1), then V ′ = V ∪ {v′, v′′}, `′(v′) = v′′,

r′(v′) = v2, `(v′′) = r(v1), r(v′′) = v2, λ′(v′) = ∪ and λ′(v′′) = �.

(c) If both v1 and v2 are in case (iii), we do a slightly more delicate construction.

First, we define a D′′ with V ′′ = V ∪ {v3, v4}, `′′(v3) = v4, r′′(v3) = r(v2),

`′′(v4) = r(v1), r′′(v4) = r(v2), λ′′(v3) = ∪, λ′′(v4) = �. Now, let (D3, v2) ←

60

union(D′′, r(v1), v3). Lastly, let V ′ = V 3 ∪ {v∗, v′}, `′(v′) = v∗, r(v′) = v2,

λ(v′) = ∪ and v∗ = ε.

Note that the union operation in case (c) does not recurse since r(v1) is safe. In particular,

it does not reach any ε-leaf.

For the union-operation, assume v1 and v2 are ε-safe and define union(D, v1, v2) →

(D′, v′) as:

• If ε 6∈ LD(v1) and ε 6∈ LD(v2), we use the construction given for a regular

Shift-ECS.

• If ε 6∈ LD(v1) and λ(v2) = ε, we define V ′ = V ∪ {v′} and λ′(v′) = ∪. We

connect `′(v′) = v2 and r′(v′) = v1.

• If ε 6∈ LD(v1) and v2 is in case (iii), let (D′′, v′′) = union(D, v1, r(v2)) as defined

for a regular Shift-ECS. We define V ′ = V ′′ ∪ {v′}, and λ′(v′) = ∪ where λ′ is

an extension of λ′′. We connect `′(v′) = `(v2) and r′(v′) = v′′.

• If λ(v1) = ε and ε 6∈ LD(v2), we define V ′ = V ∪ {v′} and λ′(v′) = ∪. We

connect `′(v′) = v1 and r′(v′) = v2.

• If λ(v1) = ε and λ(v2) = ε, we define D′ = D and v′ = v1.

• If λ(v1) = ε and v2 is in case (iii), we define D′ = D and v′ = v2.

• (*) If v1 is in case (iii) and ε 6∈ LD(v2), let (D′′, v′′) = union(D, r(v1), v2) as

defined for a regular Shift-ECS. We define V ′ = V ′′∪{v′} and λ′(v′) = ∪where

λ′ is an extension of λ′′. We connect `′(v′) = `(v2) and r′(v′) = v′′.

• If v1 is in case (iii) and λ(v2) = ε, we define D′ = D and v′ = v1.

• If both v1 and v2 are in case (iii), let (D′, v′) = union(D, v1, r(v2)) by using the

construction of the case marked with (*).

It is straightforward to check that each operation behaves as expected. Moreover, if both

v1 and v2 are ε-safe, then the resulting node v′ is ε-safe as well for each operation.

61

We finish this proof by noticing that each operation falls into a fixed number of cases

that can be checked exhaustively, and each construction has a fixed size, so they take

constant time. Furthermore, each operation is fully persistent as expected.

�

3.6. Evaluating visibly pushdown annotators with output-linear delay

The goal of this section is to describe an algorithm that takes an I/O-unambiguous

VPAnn T plus a stream S, and enumerates the set JTK(S[1, n]) for an arbitrary n ≥ 0

with O(|Q|2|∆|)-update-time and output-linear delay. We divide the presentation of the

algorithm into two parts. The first part explains the determinization of a VPA, which is

instrumental in understanding the update phase. The second part gives the algorithm and

proves its correctness. Given that a neutral symbol a can be represented as a pair <a · a>,

in this section we present the algorithm and definitions without neutral letters, that is, the

structured alphabet is Σ = (Σ<,Σ>).

Determinization of visibly pushdown automata. An important result in Alur and Mad-

husudan’s paper (Alur & Madhusudan, 2004b) that introduces VPA was that one can al-

ways determinize them. We provide here an alternative proof for this result that requires

a somewhat more direct construction. This determinization process is behind our update

algorithm and serves to give some crucial notions of how it works. We start by providing

the determinization construction, introducing some useful notation, and then giving some

intuition.

Given a VPA A = (Q,Σ,Γ,∆, I, F), we define the following deterministic VPA:

Adet = (Qdet, qdet
0 ,Γdet, δdet, F det)

with state set Qdet = 2Q×Q and stack symbol set Γdet = 2Q×Γ×Q. The initial state is

qdet
0 = {(q, q) | q ∈ I} and the set of final states is F det = {S ∈ Qdet | S ∩ (I ×F) 6= ∅}.

Finally, we define the transition function δdet such that if <a ∈ Σ<, then δdet(S, <a) =

62

(S ′, T ′) where S ′ = {(q, q) | ∃p, p′, γ. (p, p′) ∈ S ∧ (p′, <a, q, γ) ∈ ∆} and T ′ =

{(p, γ, q) | ∃p′. (p, p′) ∈ S ∧ (p′, <a, q, γ) ∈ ∆}; if a> ∈ Σ>, then δdet(S, T, a>) = S ′

where S ′ = {(p, q) | ∃p′, q′, γ. (p, γ, p′) ∈ T ∧ (p′, q′) ∈ S ∧ (q′, a>, γ, q) ∈ ∆}.

To explain the purpose of this construction, first we need to introduce some notation.

Fix a well-nested word w = a1a2 · · · an. A span s of w is a pair [i, j〉 of natural numbers

i and j with 1 ≤ i ≤ j ≤ n + 1. We denote by w[i, j〉 the subword ai · · · aj−1 of w

and, when i = j, we assume that w[i, j〉 = ε. Intuitively, spans are indexing w with

intermediate positions like:

1
a1

2
a2

3
. . .

n
an

n+1

where i is between symbols ai−1 and ai. Then [i, j〉 represents an interval {i, . . . , j} that

captures the subword ai . . . aj−1.

Now, we say that a span [i, j〉 of w is well-nested if w[i, j〉 is well-nested. Note that

ε is well-nested, so [i, i〉 is a well-nested span for every i. For a position k ∈ [1, n + 1],

we define the current-level span of k, currlevel(k), as the well-nested span [j, k〉 such

that j = min{j′ | [j′, k〉 is well-nested}. Note that [k, k〉 is always well-nested and thus

currlevel(k) is well defined. We also identify the lower-level span of k, lowerlevel(k),

defined as lowerlevel(k) = currlevel(j − 1) = [i, j − 1〉 whenever currlevel(k) = [j, k〉

and j > 1. In contrast to currlevel(k), lowerlevel(k) is not always well defined given that

it is “one level below” than currlevel(k), and this level may not exist. More concretely, for

currlevel(k) = [j, k〉 and lowerlevel(k) = [i, j − 1〉, these spans will look as follows:

1
a1

2
a2

3
. . . <ai−1

i

lowerlevel(k)︷ ︸︸ ︷
ai . . . aj−2

j-1
<aj−1

j

currlevel(k)︷ ︸︸ ︷
aj . . . ak−1

↓
k
ak . . .

n
an

n+1

As an example, consider the word
1
(
2
(
3
)
4
(
5
(
6
)
7
)
8
)
9
. The only well-nested spans

besides the ones of the form [i, i〉 are [1, 9〉, [2, 4〉, [2, 8〉, [4, 8〉 and [5, 7〉, therefore currlevel(8) =

[2, 8〉, and lowerlevel(7) = [2, 4〉.

We are ready to explain the purpose of the determinization above. Let w = a1a2 · · · an
be a well-nested word and ρdet = (S1, τ1)

a1−→ . . .
ak−1−→ (Sk, τk) be the (partial) run of

63

p q

(p, γ, p′) ∈ Tk

p′

(p′, q′) ∈ Sk

q′

pushδ

pushγ

lowerlevel(k)

currlevel(k)

.

Open:

p p′

q

pushδ

pushγ

.

Close:

p ©

p′ q′

q
pushδ

pushγ popγ

.

Figure 3.7. Left: An example run of some VPA A at step k. Right: Illus-
tration of two nondeterministic runs for some VPA A, as considered in the
determinization process.

Adet until some k. Furthermore, assume τk = Tk · τ for some Tk ∈ Γdet and τ ∈ (Γdet)∗.

The connection between ρdet and the runs of A over a1 . . . ak−1 is given by the following

invariants:

(a) (p, q) ∈ Sk if, and only if, there exists a run (q1, σ1)
a1−→ . . .

ak−1−→ (qk, σk) of A

over a1 . . . ak−1 such that qj = p, qk = q, and currlevel(k) = [j, k〉.

(b) (p, γ, q) ∈ Tk if, and only if, there exists a run (q1, σ1)
a1−→ . . .

ak−1−→ (qk, σk)

of A over a1 . . . ak−1 such that qi = p, qj = q, σk = γσ for some σ, and

lowerlevel(k) = [i, j − 1〉.

On one hand, (a) says that each pair (p, q) ∈ Sk represents some non-deterministic run

of A over w for which q is the k-th state, and p was visited on the step when the current

symbol at the top of the stack was pushed. On the other hand, (b) says that (p, γ, q) ∈ Tk
represents some run of A over w for which γ is at the top of the stack, q was visited on

the step when γ was pushed, and p was visited on the step when the symbol below γ was

pushed (see Figure 3.7 (left)). More importantly, these conditions are exhaustive, that is,

every run of A over a1 . . . ak−1 is represented by ρdet.

By these two invariants, the correctness of Adet easily follows, and the reader can get

some intuition behind the construction of δdet(S, <a) and δdet(S, T, a>) (see Figure 3.7

(right) for a graphical description). Indeed, the most important consequence of these two

invariants is that a tuple (qj, qk) ∈ Sk represents the interval of some run over w[j, k〉

with currlevel(k) = [j, k〉 and the tuple (qi, γ, qj) ∈ Tk represents the interval of some run

64

over w[i, j − 1〉 with lowerlevel(k) = [i, j − 1〉, i.e., the level below. In other words, the

configuration (Sk, τk) of Adet forms a succinct representation of all the non-deterministic

runs of A. This is the starting point of our update algorithm, that we discuss next.

The streaming evaluation algorithm. In Algorithm 2, we present the update phase for

solving the streaming version of ENUMVPANN. The main procedure is UPDATEPHASE,

that receives an I/O-unambiguous VPAnn T = (Q,Σ,Γ,Ω,∆, I, F) and a stream S, reads

the next (k-th) symbol and computes the set of outputs JTK(S[1, k]). More specifically,

it constructs an ε-ECS D and a vertex vout such that LD(vout) = JTK(S[1, k]) if S[1, k]

is well-nested, and ∅ otherwise. After the UPDATEPHASE procedure is done, we can

enumerate LD(vout) with output-linear delay by calling the enumeration phase, that is, by

applying Theorem 3.4. An example execution and the resulting data structure are shown

in Figure 3.8.

Towards this goal, in Algorithm 2 we make use of the following data structures. First,

we use an ε-ECSD = (Ω, V, `, r, λ), nodes v ∈ V , and the operations add, union, and prod

over D and v (see Section 3.5). For the sake of simplification, we overload the notation of

these operators slightly so that if v = ∅, then union(D, v, v′) = union(D, v′, v) = (D, v′).

We use a constant-time-access map (which we will call hash table) S which indexes nodes

v in D by pairs of states (p, q) ∈ Q × Q. We denote the elements of S as “(p, q) : v”

where (p, q) is the index and v is the content. Furthermore, we write Sp,q to access the

node v. We also use a stack T that stores hash tables: each element is a hash table that

indexes vertices v in D by triples (p, γ, q) ∈ Q × Γ × Q. We assume that T has the

standard stack methods push and pop where if T = tk · · · t1, then push(T, t) = t tk · · · t1
and pop(T) = tk−1 · · · t1. We write ∅ for denoting the empty stack or for checking if T is

empty. Similarly to S, we use the notation Tp,γ,q to access the nodes in the topmost hash

table in T (i.e., T is a stack of hash tables). We assume that accessing a non-assigned

index in these hash tables returns the empty set. All variables (e.g., S or T) are defined

globally in Algorithm 2 and they can be accessed by any of the subprocedures. Since we

65

use the RAM model (see Section 3.1), every operation over hash tables or stacks takes

constant time.

Algorithm 2 builds the ε-ECS D incrementally, reading the stream S one letter at a

time by calling yieldS and keeping a counter k for the position of the current letter. For

every k ∈ [1, n+1], UPDATEPHASE builds the k-th iteration of table S and stack T , which

we note as Sk and T k, respectively. Before UPDATEPHASE is called for the first time, it

runs INTIALIZE (lines 1-5) to set the initial values of k, D, S, and T . We consider the

initial S and T as the 1-st iteration, defined as S1 = {(q, q) : vε | q ∈ I} and T 1 = ∅ (i.e.

the empty stack) where vε is a node in D such that LD(vε) = {ε} (lines 3-5).

In the k-th iteration, depending on whether the current letter is an open symbol or a

close symbol, the OPENSTEP or CLOSESTEP procedures are called, updating Sk−1 and

T k−1 to Sk and T k, respectively. More specifically, UPDATEPHASE adds nodes to D such

that the nodes in Sk represent the runs over w[j, k〉 where currlevel(k) = [j, k〉, and the

nodes in the topmost table in T k represent the runs over w[i, j − 1〉 where lowerlevel(k) =

[i, j − 1〉. Moreover, for a given pair (p, q), the node Skp,q represents all runs over w[j, k〉

with currlevel(k) = [j, k〉 that start on p and end on q. For a given triple (p, γ, q) the

node T kp,γ,q represents all runs over w[i, j − 1〉 with lowerlevel(k) = [i, j − 1〉 that start

on p, and end on q right after pushing γ onto the stack. Here, the intuition gained in the

determinization of VPA is helpful. Indeed, table Sk and stack T k are the mirror of the

configuration (Sk, τk) of Adet (recall invariants (a) and (b)).

Before formalizing the previous ideas, we will describe in more detail what the proce-

dures OPENSTEP and CLOSESTEP exactly do. Recall that the operation add(D, a) simply

creates a node in D labeled as a; the operation prod(D, v1, v2) returns a pair (D′, v′) such

that LD′(v′) = LD(v1) · LD(v2); and the operation union(D, v3, v4) returns a pair (D′, v′)

such that LD′(v′) = LD(v3) ∪ LD(v4). To improve the presentation of the algorithm, we

include a simple procedure called IFPROD (lines 20-26). Basically, this procedure receives

66

Algorithm 2 The update phase of the streaming evaluation algorithm for ENUMVPANN
given an I/O-unambiguous VPAnn T = (Q,Σ,Γ,Ω,∆, I, F) and a stream S.

1: procedure INITIALIZE(T ,S)
2: k ← 1, D ← ∅
3: (D, vε)← add(D, ε)
4: S ← {(q, q) : vε | q ∈ I}
5: T ← ∅
6:
7: procedure UPDATEPHASE(T ,S)
8: a← yieldS
9: if a ∈ Σ< then

10: D ← OPENSTEP(D, a, k)
11: else if a ∈ Σ> then
12: D ← CLOSESTEP(D, a, k)

13: k ← k + 1
14: vout ← ∅
15: if T = ∅ then
16: for each p ∈ I, q ∈ F s.t.Sp,q 6= ∅

do
17: (D, vout) ←

union(D, vout, Sp,q)

18: ENUMERATIONPHASE(D, vout)

19:
20: procedure IFPROD(D, v, b, k)
21: if b = (a, o^) then
22: (D′, v′)← add(D, (o^, k))
23: (D′, v′)← prod(D′, v, v′)
24: else
25: (D′, v′)← (D, v)

26: return (D′, v′)

27: procedure OPENSTEP(D, <a, k)
28: S ′ ← ∅
29: T ← push(T, ∅)
30: for p ∈ Q and (p′, b, q, γ) ∈ ∆
31: with b ∈ {<a, (<a, o^)}

do
32: if Sp,p′ 6= ∅ then
33: if S ′q,q = ∅ then
34: (D, vε)← add(D, ε)
35: S ′q,q ← vε

36: v ← Sp,p′
37: (D, v)← IFPROD(D, v, b, k)
38: (D, v)← union(D, v, Tp,γ,q)
39: Tp,γ,q ← v

40: S ← S ′

41: return D
42:
43: procedure CLOSESTEP(D, a>, k)
44: S ′ ← ∅
45: for p, p′ ∈ Q and (q′, b, γ, q) ∈ ∆
46: with b ∈ {a>, (a>, o^)}

do
47: if Sp′,q′ 6= ∅ and Tp,γ,p′ 6= ∅ then
48: (D, v) ←

prod(D, Tp,γ,p′ , Sp′,q′)
49: (D, v)←IFPROD(D, v, b, k)
50: (D, v)← union(D, v, S ′p,q)
51: S ′p,q ← v

52: T ← pop(T)
53: S ← S ′

54: return D

a node v, an element b which can be either an input symbol a, or a pair (a, o^) for some out-

put symbol o^, and a position k, and computes (D′, v′) such that LD′(v′) = LD(v) · {(o^, k)}

if b = (a, o^), and LD′(v′) = LD(v) otherwise.

In OPENSTEP, Sk is created (i.e. S ′), and an empty table is pushed onto T k−1 to

form T k (line 29). Then, all nodes in Sk−1 (i.e. S) are checked to see if the runs they

67

represent can be extended with a transition in ∆ (lines 30-32). If this is the case (line 33

onwards), a node vε with the ε-output is added in Sk to start a new level (lines 33-35).

Then, if the transition had a non-empty output, the node Skp,p′ is connected with a new

label node to form the node v (lines 36-37). This node is stored in T kp,γ,q, or united with

the node that was already present there (lines 38-39).

In CLOSESTEP, Sk is initialized as empty (line 44). Then, the procedure looks for all

of the valid ways to join a node in T k−1, a node in Sk−1, and a transition in ∆ to form a

new node in Sk. More precisely, it looks for quadruples (p, γ, p′, q′) for which T k−1
p,γ,p′ and

Sk−1
p′,q′ are defined, and there is a close transition that starts on q′ that reads γ (lines 45-47).

These nodes are joined and connected with a new label node if it corresponds (lines 48-

49), and stored in Skp,q or united with the node that was already present there (lines 50-51).

Finally, the top of the stack T is popped after all tuples (p, γ, p′, q′) are checked (line 52).

As was already mentioned, in each step the construction of D follows the ideas of

the determinization of a visibly pushdown automaton. As such, Figure 3.7 also aids to

illustrate how the table Sk and the top of the stack T k are constructed.

Example 3.2. To illustrate the inner workings of the algorithm, we provide an exam-

ple of a run with the VPAnn from Example 3.1 as input, and an input stream S whose first

characters are<<><>>. At this point we remind the reader that the states of this VPAnn

are named p, q and r, written in a serif-less font, and they should not be read as generic

states. The execution consists in calling INITIALIZE over T and S and then calling UP-

DATEPHASE repeatedly six times. The resulting ECS D and node vout will be shown to

satisfy LD(vout) = JTK(S[1, 6]).

Recall the three accepting runs of T over the nested word <<><>>:

ρ1 : p, ε q,Y q,XY q,Y q,XY q,Y r, ε
(<, .) < > < > (>, /)

ρ2 : p, ε p,X q,YX r,X r,XX r,X r, ε< (<, .) (>, /) < > >

ρ3 : p, ε p,X p,XX p,X q,YX r,X r, ε< < > (<, .) (>, /) >

68

< < > < > >
1 2 3 4 5 6 7

S1
p,p: {ε} S2

p,p: {ε}

S2
q,q: {ε}

S3
p,p: {ε}

S3
q,q: {ε}

S4
p,p: T

3
p,X,p · S

3
p,p

S4
q,q: T

3
q,X,q · S

3
q,q

S4
p,r: T

3
1,Y,2 · S

3
q,q · {(/, 3)}

S5
p,p: {ε}

S5
q,q: {ε}

S5
r,r: {ε}

S6
p,p: T

5
p,X,p · S

5
p,p

S6
q,q: T

5
q,X,q · S

5
q,q

S6
p,r:

T 5
p,Y,q · S

5
q,q · {(/, 5)}

∪ T 5
p,X,r · S

5
r,r

S7
p,p: T

2
p,X,p · S

6
p,p

S7
p,r:

T 2
p,Y,q · S

6
q,q · {(/, 6)}

∪ T 2
p,X,r · S

6
r,r

T 2
p,X,p: S

1
p,p

T 2
p,Y,q: S

1
p,p · {(., 1)}

T 2
p,X,p

T 2
p,Y,q

T 2
p,X,p

T 2
p,Y,q

T 2
p,X,p

T 2
p,Y,q

T 2
p,X,p

T 2
p,Y,q

T 3
p,X,p: S

2
p,p

T 3
p,Y,q: S

2
p,p · {(., 2)}

T 3
q,X,q: S

2
q,q

T 5
p,X,p: S

4
p,p

T 5
p,Y,q: S

4
p,p · {(., 4)}

T 5
q,X,q: S

2
q,q

T 5
p,X,r: S

4
p,r

S1
p,p : ε S2

p,p :
S2
q,q :

T 2
p,X,p :
T 2
p,Y,q :

ε
ε
ε
(., 1)

S3
p,p :
S3
q,q :

T 3
p,X,p :
T 3
p,Y,q :
T 3
q,X,q :

ε
ε
ε
(., 2)

ε

S4
p,p :
S4
q,q :
S4
p,r :

ε
ε
�

(/, 2) (/, 3)

S5
p,p :
S5
q,q :
S5
r,r :

T 5
p,X,p :
T 5
p,Y,q :
T 5
q,X,q :
T 5
p,X,r :

ε
ε
ε
ε
(., 4)

ε
�

(/, 2) (/, 3)

S6
p,p :
S6
q,q :
S6
p,r :

ε
ε
∪

�
(., 4)(/, 5)

�
(., 2)(/, 3)

S7
p,p : ε
S7
p,r : ∪
�

(., 1)(/, 6)
∪

�
(., 4)(/, 5)

�

(., 2)(/, 3)

Figure 3.8. Example of running Algorithm 2 over the VPAnn T from Fig-
ure 3.1 and a stream S such that S[1, 6] = <<><>>. The bottom part
illustrates the state of D, and the node from D that is stored at every new
index at each step.

The call to INITIALIZE is depicted in column 1. The table S is created and its only index

is (p, p). This index includes the only node in D, which is an ε-node. The stack T is also

created and is empty at this point.

The following columns represent the state of the indices and what is stored in each

after each call to UPDATEPHASE. The upper region shows the indices from S as they end

up being defined at the end of each call; the middle region shows the state of the stack

T in full, also at the end of each call (the stacks in the figure show the latest element on

top; whenever the stack is empty, it is represented by a single horizontal line); the bottom

region shows, in each column k, the nodes in the ECSD that are referenced directly by Sk

69

and T k. Note that the indices of each Sk are lost at the end of step k − 1, yet the indices

of T k might be used in a later step, as is the case of T 2 at step 7.

To explain a bit further, in these regions, the indices are mapped to their respective sets,

which are written as the logic of the algorithm defines them. Let us explain the definition

of two particular indices to illustrate the constructions in more detail.

• First is index T 3
p,Y,q: Since it is first defined in step three, after an open symbol,

it is built through lines 30-39. The only relevant transition for this index is

(p, (<, .), q,Y). After seeing that S2
p,p is not empty, in this same iteration the

algorithm builds the index S3
q,q with an ε-node (lines 34,35), and after doing

this, it builds a node v that represents the concatenation of S2
p,p with the set

{(., 2)} (line 37) – and since S2
p,p contained only an ε-node, v ends up as a

bottom node with label (., 2). This node then goes through a union with an

empty index (line 38), so it remains unchanged, and then it is assigned to T 3
p,Y,q

(line 39). In the end, the node in D that is assigned to the index is only this

bottom node v, which is depicted in the bottom part of the figure.

• Now let us see index S7
p,r: This index is defined through lines 45-51. The relevant

transitions in this case are (q, (>, /),Y, r) and (r, >,X, r). Note how when the

procedure goes through lines 48-49 for the first transition, it defines a node v that

represents the concatenation of T 2
p,Y,q, S6

q,q and the set {(/, 6)}, and when it goes

through these lines for the second transition, v represents the concatenation of

T 2
p,X,r and S6

r,r. It is worth noting that indices T 2
p,Y,q and T 2

p,X,r were defined back

in step 2, remained in the stack during steps 3 through 6, and only now at step

7 are they used. The two mentioned sets are merged by the union operator in

line 50. Finally, the index is assigned a union node that represents this merging,

which can be also seen in the bottom part of the figure.

To conclude the example, note how the only relevant index that is used in line 17 is

S7
p,r. At the very end, the node vout is equal to the union node stored at this index, which

when enumerated will produce the set JT1K(S[1, 6]).

70

Correctness of the streaming evaluation algorithm. The way how the table Sk and the

stack T k are constructed in Algorithm 2 is formalized in the following result. Recall that

a run of T over a well-nested word w = a1 · · · an is a sequence of the form:

ρ = (q1, σ1)
b1−→ . . .

bn−→ (qn+1, σn+1)

where each bi ∈ {ai, (ai, o^i)}. Given a span [i, j〉, define a subrun of ρ as a subsequence

ρ[i, j〉 = (qi, σi)
bi−→ . . .

bj−1−−→ (qj, σj). We also extend the function out to receive a subrun

ρ[i, j〉 in the following way: out(ρ[i, j〉) = out(o^i, i) · . . . · out(o^j−1, j − 1). Finally,

define Runs(T , w) as the set of all runs of T over w.

Lemma 3.2. Let T be a VPAnn and w = a1 · · · an be a well-nested word. While

running the procedure UPDATEPHASE of Algorithm 2, for every k ∈ [1, n+ 1], every pair

of states p, q and stack symbol γ the following hold:

(i) LD(Skp,q) has exactly all sequences out(ρ[j, k〉) such that ρ ∈ Runs(T , w[1, k〉),

currlevel(k) = [j, k〉, and ρ[j, k〉 starts on p and ends on q.

(ii) If lowerlevel(k) is defined, then LD(T kp,γ,q) has exactly all sequences out(ρ[i, j〉)

such that ρ ∈ Runs(T , w[1, j〉), lowerlevel(k) = [i, j − 1〉, and ρ[i, j〉 starts on

p, ends on q, and the last symbol pushed onto the stack was γ.

PROOF. We will prove the lemma by induction on k. The case k = 1 is trivial since

currlevel(1) = [1, 1〉, S1
p,q is empty and lowerlevel(1) is not defined. We assume that

statements 1 and 2 of the lemma are true for k − 1 and below.

If ak ∈ Σ<, the algorithm proceeds into OPENSTEP to build Sk and T k. Statement

1 can be proved trivially since currlevel(k) = [k, k〉, similarly as for the base case. For

statement 2 let lowerlevel(k) = [i, k − 1〉, and consider a run ρ ∈ Runs(T , w[1, k〉) such

that ρ[i, k〉 starts on p and ends on q for some p, q and γ, and let p′ be its second-to-last

state. Since ak is an open symbol, then the string ai+1 · · · ak−1 is well-nested, so it holds

that currlevel(k − 1) = [i, k − 1〉. Therefore, from our hypothesis it holds that LD(Sk−1
p,p′)

contains out(ρ[i, k − 1〉), and so, out(ρ[i, k〉) is included in LD(T kp,γ,q) at some iteration

71

of T kp,γ,q at line 39. To show that every element in LD(T kp,γ,q) corresponds to some run

ρ ∈ Runs(T , w[1, k〉), we note that the only step that modifies T kp,γ,q is line 39, which is

reached only when a valid subrun from i to k can be constructed.

If ak ∈ Σ>, the algorithm proceeds into CLOSESTEP to build Sk and T k. Let currlevel(k) =

[j, k〉. In this case, statement 2 can be deduced directly from the hypothesis since j < k

and the table on the top of T k is the same as T j . To prove statement 1, note that since ak is a

close symbol it holds that currlevel(k− 1) = [j′, k− 1〉 and lowerlevel(k− 1) = [j, j′− 1〉

for some j′. Consider a run ρ ∈ Runs(T , w) such that ρ[j, k〉 starts on p, ends on q,

and the last symbol pushed onto the stack is γ. This run can be subdivided into three

subruns from p to p′, from p′ to q′, and a transition from q′ to q as it is illustrated in

Figure 3.7 (Right). The first two subruns correspond to ρ[j, j′ + 1〉 and ρ[j′, k − 1〉,

for which out(ρ[j, j′ + 1〉) ∈ LD(T k−1
p,γ,q) and out(ρ[j′, k − 1〉) ∈ LD(Sk−1

p′,q′). Therefore,

out(ρ[j, k〉) ∈ LD(Skp,q) at some iteration of line 51. To show that every element in Skp,q
corresponds to some run ρ ∈ Runs(T , w[1, k〉), note that the only line at which Skp,q is

modified are is line 51, which is reached only when a valid run from j to k has been

constructed. �

Since w is well nested, then currlevel(|w| + 1) = [1, |w| + 1〉, and so, the lemma

implies that the nodes in S|w|+1 represent all runs of T over w. Then, whenever S[1, k] is

well-nested, the stack T is empty (i.e., T = ∅) and there may be something to enumerate

(line 15). By taking the union of all pairs in Sk+1 that represent accepting runs (as is done

in lines 16-17), we can conclude the correctness of Algorithm 2.

Theorem 3.5. Given a VPAnn T and a stream S, UPDATEPHASE(T ,S) fulfils the con-

ditions of a streaming evaluation algorithm and, after reading the k-th symbol, produces

a pair (D, vout) such that LD(vout) = JTK(S[1, k]).

At this point, we address the fact that D needs to be duplicate-free in order to enumer-

ate all the outputs from (D, vout) without repetitions. This is guaranteed, essentially, by

72

the fact that T is I/O-unambiguous. Indeed, the previous result holds even if T is not I/O-

unambiguous. The next result guarantees that the output can be enumerated efficiently.

Lemma 3.3. Let T be an I/O-unambiguous VPAnn. While running the UPDATEPHASE

procedure of Algorithm 2, the ε-ECS D is duplicate-free at every step.

PROOF. For the sake of simplification, assume that T is I/O-unambiguous on subruns

as well. Formally, we extend the condition so that for every well-nested word w, span

[i, j〉 and µ ∈ Ω∗, there exists only one run ρ ∈ Runs(T , w) such that µ = out(ρ[i, j〉).

Towards a contradiction, we assume that D is not duplicate-free. Therefore, at least one

of these conditions must hold: (1) there is some union node v in D for which ŁD(`(v))

and ŁD(r(v)) are not disjoint, or (2) there is some product node v for which there are at

least two ways to decompose some µ ∈ ŁD(v) in non-empty strings µ1 and µ2 such that

µ = µ1 · µ2 and µ1 ∈ Ł(`(v)) and µ2 ∈ ŁD(r(v)).

Assume the first condition is true and let v be a union node that satisfies it, and let k

be the step in which it was added to D. If this node was added on OPENSTEP, then the

node v represents a subset of the subruns defined in condition 1 of Lemma 3.2. Consider

two different iterations of lines 38-39 on step k where two nodes v and v′ were united

for which there is an element µ ∈ ŁD(v) ∩ ŁD(v′). Since these nodes were assigned

to Tp,γ,q on different iterations, the states p′ that were being considered must have been

different. Therefore, if lowerlevel(k) = [i, j〉, µ = out(ρ[i, k〉) = out(ρ′[i, k〉) for two

runs ρ and ρ′ where the (k − 1)-th state is different. This violates the condition that T

is I/O-unambiguous. If this node was added on CLOSESTEP, we can follow an analo-

gous argument. Note that union nodes created on a prod operation are duplicate-free by

construction (see Theorem 3.4).

Assume now that the second condition is true and let v be a node for which the con-

dition holds and let k be the step where it was created. We note that this node could not

have been created in OPENSTEP since the only step that creates product nodes is line 39,

73

where vλ has the label (o^, k), and Sp,p′ is connected to nodes that were created in a previ-

ous step, so all of the elements µ ∈ Ł(Sp,p′) only contain pairs (o^, j) where j < k. We can

follow a similar argument to prove that this node could not have been created in line 49

of CLOSESTEP. We now have that v was created in line 48 of OPENSTEP, and therefore

`(v) = T k−1
p,γ,q and r(v) = Sk−1

p′,q′ unless either of these indices were empty. However, that

is not possible since we assumed that the step where v was created was k, and if either

were empty, no node would have been created. Now let µ ∈ Ł(v) be such that there exist

strings µ1, µ
′
1 ∈ Ł(T k−1

p,γ,q) and µ2, µ
′
2 ∈ Ł(Sk−1

p′,q′) such that µ = µ1µ2 = µ′1µ
′
2 and µ1 6= µ′1.

Without loss of generality, let µ′′ be the non-empty suffix in µ1 such that µ′1µ
′′ = µ1. Here

we reach a contradiction since µ′′ is a prefix of µ2 and thus it must contain a pair (o^, j)

such that and j ∈ lowerlevel(k) and j ∈ currlevel(k), which is not possible. �

The complexity of this algorithm can be easily deduced from the fact that the ε-ECS

operations we use take constant time (Theorem 3.4). For a VPAnn T = (Q,Σ,Γ,Ω,∆, I, F),

in each of the calls to OPENSTEP, lines 32-39 perform a constant number of instructions,

and they are visited at most |Q||∆| times. In each of the calls to CLOSESTEP, lines 47-

51 perform a constant number of instructions, and they are visited at most |Q|2|∆| times.

Combined with Theorem 3.5, Lemma 3.3, and Theorem 3.4, this proves the main result in

this chapter (i.e., Theorem 3.1).

Extension to prefixes of well-nested words. The aforementioned algorithm is described

only for well-nested inputs. In this subsection, we will give the main ideas of how it can be

extended to handle prefixes of well-nested words. First, we note that if Algorithm 2 were

to be used over a prefix w[1, k〉 of a well-nested word w ∈ Σ<*>, the resulting D in line 18

would represent only outputs from the span [j, k〉 = currlevel(k). Then, the idea is to

add a second stack T ′ to the algorithm, and the invariant will be that the topmost element

in it contains the outputs that correspond to the span [1, j〉. To be a bit more precise,

each element contains an extra one-dimensional table, indexed by states in Q, such that

T ′q is the union of Tp,γ,q for every state p and stack symbol γ. Recall that we are abusing

notation by using T ′ to also represent the topmost element in the stack. This extension can

74

be added to OPENSTEP with no extra cost, and in CLOSESTEP we need only to add an

extra pop to the topmost element in T ′. The final change is to replace line 17 by the steps

(D, v) ← prod(D, T ′p, Sp,q) and (D, vout) ← union(D, vout, v), and of course eliminate the

restriction that p ∈ I in the for argument. For the sake of presentation, we omit a formal

proof of correctness.

3.7. Application: document spanners and extraction grammars

Liat Peterfreund (Peterfreund, 2021) proposed using extraction grammars to specify

document spanners, which is the natural extension of regular spanners to a controlled

form of recursion. Furthermore, she provided an enumeration algorithm for unambiguous

functional extraction grammars that outputs the results with constant delay after quintic

time preprocessing (i.e., in the document), later improved to cubic time (see Chapter 4). By

restricting to the class of visibly pushdown extraction grammars, we can show a streaming

enumeration algorithm with update-time that is independent of the document, and output-

linear delay. We proceed by recalling the framework of document spanners and extraction

grammars to define the class of visibly pushdown extraction grammars and state the main

algorithmic result of the section.

We use the framework of extraction grammars, recently proposed in (Peterfreund,

2021), to specify document spanners. For X ⊆ Vars, recall that CX = { `x,ax| x ∈ X} is

the set of captures of X . An extraction context-free grammar, or extraction grammar for

short, is a tuple:

G = (X , V,Σ, S, P)

such that X ⊆ Vars, V is a finite set of non-terminal symbols with V ∩ Vars = ∅, Σ

is the alphabet of terminal symbols with Σ ∩ V = ∅, S ∈ V is the start symbol, and

P ⊆ V × (V ∪ Σ ∪ CX)∗ is a finite relation. In the literature, the elements of V are also

referred to as “variables”, but we call them non-terminals to distinguish V from Vars. Each

pair (A,α) ∈ P is called a production and we write it as A → α. The set of productions

75

P defines the (left) derivation relation:

⇒G ⊆ (V ∪ Σ ∪ CX)∗ × (V ∪ Σ ∪ CX)∗

such that wAβ ⇒G wαβ iff w ∈ (Σ ∪ CX)∗, A ∈ V , α, β ∈ (V ∪ Σ ∪ CX)∗, and

A → α ∈ P . We denote by ⇒∗G the reflexive and transitive closure of ⇒G. Then the

language defined by G is L(G) = {w ∈ (Σ ∪ CX)∗ | S ⇒∗G w}. Naturally, each word

w ∈ L(G) is a ref-word.

In order to define a spanner fromG, we need to interpret ref-words as mappings (Freydenberger,

2019). The spanner JGK associated to an extraction grammar G is defined over any docu-

ment d ∈ Σ∗ as:

JGK(d) = {µr | r ∈ L(G), r is valid for X , and plain(r) = d }.

There are two classes of extraction grammars that are relevant for our discussion. The first

class of grammars is called functional extraction grammars. An extraction grammar G is

functional if every r ∈ L(G) is valid for X . In (Peterfreund, 2021) it was shown that for

any extraction grammar G there exists an equivalent functional grammar G′ (i.e. JGK =

JG′K). Non-functional grammars are problematic given that, even for regular spanners,

their decision problems easily become intractable (Maturana, Riveros, & Vrgoc, 2018;

Freydenberger, Kimelfeld, & Peterfreund, 2018). For this reason, from now on we restrict

to functional extraction grammars without loss of expressive power. The second class

of grammars is called unambiguous extraction grammars. An extraction grammar G is

unambiguous if for every r ∈ L(G) there exists exactly one path from S to r in the graph

((V ∪ Σ ∪ CX)∗,⇒G). In other words, there exists exactly one leftmost derivation.

We consider now a sub-class of extraction grammars for nested words. Let Σ =

(Σ<,Σ>,Σ|) be a structured alphabet. A visibly pushdown extraction grammar (VPEG)

is a functional extraction grammar G = (X , V,Σ, S, P) in which Σ = (Σ<,Σ>,Σ|) is a

structured alphabet, and all the productions in P are of one of the following forms: (1)

A → ε; (2) A → aB such that a ∈ Σ| ∪ CX and B ∈ V ; (3) A → <aB b>C such

76

that <a ∈ Σ<, b> ∈ Σ>, and B,C ∈ V . Intuitively, rules A → aB allow producing ar-

bitrary sequences of neutral symbols, where rules A → <aB b>C forces the word to be

well-nested.

Visibly pushdown extraction grammars are a subclass of extraction grammars that

works for well-nested documents. In fact, the reader can notice that the visibly pushdown

restriction for extraction grammars is the analog counterpart of visibly pushdown gram-

mars3 introduced in (Alur & Madhusudan, 2004b). Therefore, one could expect VPEGs

to be less expressive than extraction grammars. Interestingly, we can use Theorem 3.1 to

give an efficient streaming enumeration algorithm for evaluating VPEG.

Before stating the main result of this section, we will specify the format in which the

results are to be enumerated. In a similar fashion as in Section 3.3, we define the support of

a (X , d)-mapping µ, denoted by supp(µ), as the set of positions mentioned in µ, namely,

supp(σ) = {i | µ(x) = [i, j〉 or µ(x) = [j, i〉 for some j ∈ [1, |d|+ 1] and x ∈ X}.

Let supp(σ) = {i1, . . . , im} such that ij < ij+1 for every j < m. Then, we de-

fine the encoding of µ as: enc(µ) = (S1, i1) . . . (Sm, im) where Si = { `x| µ(x) =

[i, j〉 for some j} ∪ {ax| µ(x) = [j, i〉 for some j}. The enumeration algorithm we pro-

vide thus enumerates the encoding of every mapping from JGK(d).

Theorem 3.6. Fix a set of variables X . The problem of, given a functional visibly

pushdown extraction grammar G = (X , V,Σ, S, P) and a stream S , enumerating all

(X ,S[1, n])-mappings of JGK(d) can be solved with update-time O(2|G|
3
), and output-

linear delay. Furthermore, if G is restricted to also be unambiguous, then the problem

can be solved with update-time O(|G|3).

PROOF. To link the model of visibly pushdown extraction grammars and visibly push-

down automata we define another class of automata based on the ideas in (Peterfreund,

3The definition of visibly pushdown grammars in (Alur & Madhusudan, 2004b) is slightly more complicated
given that they consider nested words that are not necessary well-nested (see the discussion in Section 3.1).

77

2021). Let A be an extraction visibly pushdown automaton (EVPA) if

A = (X,Q,Σ,Γ,∆, I, F) where X is a set of variables, Q is a set of states, Σ =

(Σ<,Σ>,Σ|) is a visibly pushdown alphabet, Γ is a stack alphabet, ∆ ⊆ (Q × Σ< ×

Q×Γ) ∪ (Q×Σ>×Γ×Q) ∪ (Q× (Σ|∪CX)×Q), I is a set of initial states, and F is a

set of final states. Note that this is a simple extension of VPA where neutral transitions are

allowed to read neutral symbols or captures in X . We define the runs as we did for VPA,

except the input in an EVPA is a ref-word r ∈ (Σ ∪ CX)∗, and we say that r ∈ L(A) if

and only if there is an accepting run ofA on r. Furthermore, we say thatA is functional if

every r ∈ L(A) is valid for X , andA is unambiguous if for every ref-word r ∈ (Σ∪CX)∗

there exists at most one accepting run of A over r. It is clear that this is a direct counter-

part to visibly pushdown extraction grammars. Therefore, we can use the ideas in (Alur &

Madhusudan, 2004b) to obtain a one-to-one conversion from one to another.

CLAIM 3.3. For a given VPEG G there exists an EVPAAG such that L(G) = L(AG).

Moreover, AG is unambiguous iff G is unambiguous, and AG can be constructed in time

O(|G|).

PROOF. Let G = (X, V,Σ, S, P) be a VPEG. We construct an EVPA given by AG =

(X,Q,Σ,Γ,∆, I, F) such that L(G) = L(AG) using an almost identical construction

to the one in Theorem 6 of (Alur & Madhusudan, 2004b). The only differences arise

from our structure being defined for well-nested words, which makes the construction a

bit simpler, and from the case where a production is of the form X → aY , for which

we add the possibility that a ∈ CX . This construction provides one transition in ∆ per

production in P , and in some cases, it needs to check if a variable is nullable (see (Alur &

Madhusudan, 2004b)). Checking if a single variable is nullable is costly, but by a constant

number of traversals in P it is possible to check which variables in X are nullable or not,

which can be done before building ∆. Therefore, this construction can be done in time

O(|P |). Finally, AG is unambiguous if and only if G is unambiguous, which is another

consequence of Theorem 6 of (Alur & Madhusudan, 2004b). �

78

We define the spanner JAK for a given EVPA A identically as in the definition of an

extraction grammar. Note that from the proof it follows that if G is functional, then AG is

functional as well.

For the next part of the proof, assume thatAG is functional and unambiguous. We will

show that for an EVPA A and stream S, the set JAK(d), can be enumerated with output-

linear delay and update-time O(|AG|3), for d = S[1, n]. Towards this goal, we will start

with an unambiguous AG = (X,Q,Σ,Γ,∆, I, F) and convert it into a VPAnn TG with

output symbol set 2CX , and then use our algorithm to enumerate the set JTGK(d′) where

d′ = d#, using a dummy symbol #. We will show that this construction is correct because

JTGK(d′) = {enc(µ) | µ ∈ JAGK(d)}.

Let TG = (Q′,Σ′,Γ,Ω,∆′, I, F ′) where Q′ = Q ∪ {qf}, Σ′ = (Σ<,Σ>,Σ
|
#) such

that Σ
|
= Σ| ∪ {#}, Ω = 2CX and F ′ = {qf}. To define ∆′ we introduce a merge

operation on a path over AG. This is defined for any non-empty sequence of transitions

t = (p0, v1, p1)(p1, v2, p2) · · · (pm−1, vm, pm) ∈ ∆∗ such that vi ∈ CX for i ∈ [1,m]. If

these conditions hold, we say that t is a v-path ending in pm. Let t be such a v-path and

let S = {v1, . . . , vm}. For <a ∈ Σ<, and a transition (p, <a, γ, q) such that p = pm, we

define merge(t, (p, <a, γ, q)) := (p0, <a, S, γ, q). For a> ∈ Σ> and a transition (p, a>, q, γ)

such that p = pm, we define merge(t, (p, a>, q, γ)) := (p0, a>, S, q, γ). For a ∈ Σ| and a

transition (p, a, q) such that p = pm, we define merge(t, (p, a, q)) := (p0, a, S, q). We now

define ∆′ as follows:

∆′ =
(
∆ \ (Q× CX ×Q)

)
∪

{merge(t, (p, <a, γ, q)) | there is a v-path t ∈ ∆∗ ending in p and (p, <a, γ, q) ∈ ∆} ∪

{merge(t, (p, a>, q, γ)) | there is a v-path t ∈ ∆∗ ending in p and (p, a>, q, γ) ∈ ∆} ∪

{merge(t, (p, a, q)) | there is a v-path t ∈ ∆∗ ending in p and (p, a, q) ∈ ∆} ∪

{merge(t, (p,#, qf)) | there is a v-path t ∈ ∆∗ ending in p and p ∈ F}.

79

Since AG is functional, the CX-transitions in ∆ define a DAG over Q, from which we

deduce that ∆ is well-defined. Let us make note that we will use the symbol ω to refer to

an output of a VPAnn to avoid confusion with mappings.

Before proving the equivalence between these two structures, let us note that a v-path

t = (p0, v1, p1)(p1, v2, p2) . . . (pm−1, vm, pm) can be translated directly into a subrun:

ρt = p0
v1−→ p1

v2−→ . . .
vm−→ pm.

We indistinguishably apply the operation merge over v-paths or subruns of this form. Also,

note that if A is unambiguous, and merge is done on a subrun of an accepting run, then

the operation is reversible.

Let µ ∈ JAGK(d), and let r ∈ L(AG) such that r is valid for X , plain(r) = d and

µr = µ. Let ρ be the accepting run of AG over r, and consider a run ρ′ that is obtained

from ρ by applying merge over every maximal sequence t of variable transitions. From

the construction of ∆′, it can be seen that this is a valid and accepting run of TG over d′,

and that out(ρ′) = enc(µ). We conclude that {enc(µ) | µ ∈ JAGK(d)} ⊆ JTGK(d′).

Now, let ω = JTGK(d′), and let ρ be an accepting run of TG over d′ with output ω.

Consider the run ρ′ that is obtained from ρ by applying the reverse of merge on every

transition in it that contains an output. Since ρ was over d ·# and accepting, clearly ρ′ is a

valid run of AG over d, and ends in a state in F . One can also check that the sequence of

symbols in ρ forms a ref-word r for which enc(µr) = ω and that ρ is valid forX because it

is accepting andAG is functional. We conclude that JTGK(d′) ⊆ {enc(µ) | µ ∈ JAGK(d)},

and from the previous paragraph we obtain that these sets are equal.

To see that TG is unambiguous, one simply needs to see that (1) every accepting run ρ

of TG has a unique counterpart ρ′ of AG, as it was stated in the previous part of the proof,

and (2) the merge operation has only one possible output. Therefore, if two runs ρ1 and

ρ2 of TG have the same output, their counterparts ρ′1 and ρ′2 ofAG satisfy ρ′1 = ρ′2. Clearly,

80

applying the merge operation over these runs renders ρ1 and ρ2, so we conclude that they

are equal, and thus, TG is unambiguous.

The size of ∆ is bounded by the number of valid v-paths there could exist in AG. Re-

call that AG is functional, and thus, every v-path in AG contains at most one instance of

each element in CX . From this, it follows that the size of TG is in O(|∆||2CX |). Further-

more, since the transitions in ∆ form a DAG over Q, each of these v-paths can be found

by a single traversal over AG, so building TG takes extra time O(|∆|).

By using the algorithm detailed in Section 3.6 we can enumerate the set JTGK(d) with

update-timeO(|TG|3) and output-linear delay. However, with a more fine-grained analysis

of the algorithm, we note that the update-time is bounded by |Q′|2|∆′| ∈ O(|Q|2|∆||2CX |).

We modify the enumeration algorithm slightly so that for each output ω ∈ JTGK(d), there

is an extra step of building the expected output in JGK(d). We do this by checking ω

symbol by symbol and building a mapping µ ∈ JGK(d), which can be done in timeO(|µ|),

since clearly |ω| ≤ |µ|. It follows that this enumeration can be done with update-time

O(|G|3) and output-linear delay.

Finally, we address the case where G is an arbitrary VPEG. The way we deal with

this case is by determinizing the EVPA constructed in Claim 3.3. This can be done in

timeO(2|AG|). From here, we can follow the reasoning given for the unambiguous case to

prove the statement. �

Note that, although the update-time of the algorithm is exponential in the size of the

grammar, in terms of data complexity the update-time is constant. Furthermore, for the

special case of unambiguous grammars the update-time even is polynomial. Unambiguous

grammars are very common in parsing tasks (Aho, Sethi, & Ullman, 1986) and, thus, this

restriction could be useful in practice.

81

3.8. Related Work

The problem of streaming query evaluation has been extensively studied in the last

decades. Some work considered streaming verification, like schema validation (Segoufin

& Vianu, 2002) or type-checking (Kumar, Madhusudan, & Viswanathan, 2007), where

the output is true or false. Other proposals (Y. Chen, Davidson, & Zheng, 2006; Olteanu,

Furche, & Bry, 2004; Josifovski, Fontoura, & Barta, 2005; Green, Gupta, Miklau, Onizuka,

& Suciu, 2004; Olteanu, 2007) provided streaming algorithms for XPath or XQuery’s frag-

ments; however, extending them for reaching constant-delay enumeration seems unlikely.

Furthermore, most of these works (Kumar et al., 2007; Gou & Chirkova, 2007; Gauwin et

al., 2009b) assumed outputs of fixed size (i.e., tuples). People have also considered other

aspects of streaming evaluation with outputs like earliest query answering (Gauwin et al.,

2009b) or bounded delay (Gauwin, Niehren, & Tison, 2009a) (i.e., given the first visit of a

node, find the earliest event that permits its selection). These aspects are orthogonal to the

problem studied here. Another line of research is (Bar-Yossef et al., 2005, 2007), which

presents space lower bounds for evaluating fragments of XPath or XQuery over streams.

These works do not consider restrictions on the delay to give outputs.

Visibly pushdown automata (Alur & Madhusudan, 2004b) are a model usually used for

streaming evaluation of boolean queries (Kumar et al., 2007). In (Filiot, Gauwin, Reynier,

& Servais, 2019; Alur, Fisman, Mamouras, Raghothaman, & Stanford, 2020), the authors

studied the evaluation of transducers built from visibly pushdown automata in a streaming

fashion, but none of them saw enumeration problems. Other extensions (Gauwin, Niehren,

& Roos, 2008) for streaming evaluation have been analyzed but restricted to fixed-size

outputs, and constant delay was not included.

Constant-delay algorithms have been studied for several classes of query languages

and structures (Segoufin, 2013), as we already discussed. In (Bagan, 2006a; Amarilli et

al., 2017), researchers considered query evaluation over trees (i.e., a different represen-

tation for nested documents), but their algorithms are for offline evaluation, and it is not

82

clear how to extend this algorithm for the online setting. This research is extended with

updates in (Amarilli et al., 2019b), which can encode streams by inserting new data items

to the left. However, their update-time is logarithmic, whereas our proposal can do it with

constant time (i.e., in data complexity). Furthermore, to the best of our knowledge, it is

unclear how to modify the work in (Amarilli et al., 2019b) to get constant update-time in

our scenario.

Streaming evaluation with constant-delay enumeration was included in the context of

dynamic query evaluation (Idris et al., 2017; Berkholz et al., 2017; Nikolic & Olteanu,

2018; Kara, Nikolic, Olteanu, & Zhang, 2020) or complex event processing (Grez et al.,

2019; Grez & Riveros, 2020). In both cases, the input cannot encode nested documents,

and their results do not apply.

83

4. ENUMERATION FOR ANNOTATED GRAMMARS

In this chapter, we introduce annotated grammars, an extension of context-free gram-

mars which allows annotations on terminals. We study the enumeration problem for anno-

tated grammars: fixing a grammar, and given a string as input, enumerate all annotations

of the string that form a word derivable from the grammar.

The first result in this chapter is an algorithm for unambiguous annotated grammars,

which preprocesses the input string in cubic time and enumerates all annotations with

output-linear delay.

We then study how we can reduce the preprocessing time while keeping the same

delay bound, by making additional assumptions on the grammar. Specifically, we present

a class of grammars which only have one derivation shape for all outputs, for which we

can enumerate with quadratic time preprocessing.

We also give classes that generalize regular spanners for which linear time preprocess-

ing is enough.

Comparison to previous chapter. In this chapter, we re-use the enumeration data struc-

ture of Chapter 3, and we consider a transducer model in Section 4.4 that recaptures some

of the already presented results. However, in our problem, we work with pushdown au-

tomata without a visibility guarantee. This poses new technical challenges: the underlying

tree structure (i.e., the parse tree) is not known in advance and is generally not unique.

Outline of the paper. In Section 4.1 we give some basic definitions of the concepts we

will use througout the paper. In Section 4.2, we describe our results for unambiguous

grammars. In Section 4.3, we present a relaxation of unambiguous grammars that we call

rigid grammars, and some results for this class. In Section 4.4, we describe our results for

pushdown annotators. In Section 4.5, we detail how to use our results in the context of

document spanners. We close our chapter in Section 4.6 by discussing related work.

84

4.1. Grammars and Annotators

Strings and annotations. Let Σ be a finite alphabet. We write Σ∗ for the set of strings

over Σ. The length of a string w = w1 · · ·wn ∈ Σ∗ is |w| := n. The string of length 0 is

written ε. We write u · v or uv for the concatenation of u, v ∈ Σ∗.

Let Ω be a finite set of annotations. An annotated string is a string ŵ ∈ (Σ∪Σ×Ω)∗.

We denote strings byw and annotated strings by ŵ when this avoids confusion. Intuitively,

if ŵ = ŵ1 · · · ŵn, then ŵi = (a, o^) ∈ Σ × Ω means that the letter a at position i is

annotated with o^(called an annotated letter) and ŵi ∈ Σ means that there is no annotation

at position i. Given an annotated string ŵ = ŵ1 · · · ŵn, we denote by str(ŵ) = str(ŵ1)·· · ··

str(ŵn) the unannotated string of ŵ, i.e., str((a, o^)) := a and str(a) := a, and we denote

by ann(ŵ) = ann(ŵ1, 1) · · · · · ann(ŵn, n) the annotations of ŵ, i.e., ann((a, o^), i) :=

(o^, i) and ann(a, i) := ε. Note that |str(ŵ)| = |w|, but the length |ann(ŵ)| of ann(ŵ) can

be much less than |w|.

Annotated grammars. A context-free grammar (CFG) over Σ is a tupleG = (V,Σ, P, S),

where V is a set of nonterminals, Σ is the alphabet (whose letters are called terminals),

S ∈ V is the start symbol, and P is a finite set of rules of the form X → α where X ∈ V

and α ∈ (V ∪ Σ)∗. We assume that V and Σ are disjoint. In this chapter, we extend this

definition to an annotated (context-free) grammar G = (V,Σ,Ω, P, S), which is simply

the CFG (V,Σ ∪ Σ × Ω, P, S). We use G to denote a CFG and G to denote an annotated

grammar. The terminals of G are letters a ∈ Σ and annotated letters (a, o^) ∈ Σ× Ω.

We recall the semantics of a CFGG = (V,Σ, P, S). Given a string u ∈ Σ∗, two strings

γ, δ ∈ (V ∪ Σ)∗, and X ∈ V , we say that uXδ produces uγδ, denoted by uXδ ⇒G uγδ,

if P contains the rule X → γ. We then say that α ∈ (V ∪ Σ)∗ derives β ∈ (V ∪ Σ)∗,

denoted by α ⇒∗G β or just α ⇒∗ β, if there is a sequence of strings α1, . . . , αm with

m ≥ 1 such that α = α1 ⇒ α2 ⇒ . . . ⇒ αm = β. We say that G derives α ∈ (V ∪ Σ)∗

if S ⇒∗ α, and define the language L(G) of G as the set of strings {w ∈ Σ∗ | S ⇒∗ w}.

85

Note that our derivations are leftmost derivations, which is standard for the unambiguity

notions that we introduce afterwards. The language of an annotated grammar G is that of

the underlying CFG on the alphabet of terminals Σ∪Σ×Ω. In particular, L(G) is a set of

annotated strings.

The purpose of annotated grammars is to consider all possible annotations of an input

unannotated string w ∈ Σ∗. Specifically, the semantics of an annotated grammar G is

the function JGK mapping each string w ∈ Σ∗ to the following (possibly empty) set of

annotations: JGK(w) := {ann(ŵ) | ŵ ∈ L(G) ∧ str(ŵ) = w}.

An output of evaluating G over w is just an element µ ∈ JGK(w). Note that, in the

case when Ω = ∅, for all w ∈ Σ∗ we have JGK(w) = ∅ if w /∈ L(G) and JGK(w) = {ε}

if w ∈ L(G). So, annotated grammars subsume CFGs. In Section 4.5, we show that

they also subsume the extraction grammars of (Peterfreund, 2023), which implies that

annotated grammars are more expressive than regular spanners (Florenzano et al., 2018;

Amarilli et al., 2020), or even visibly pushdown transducers from Chapter 3.

Towards ensuring tractability, we call a CFG G unambiguous if for every w ∈ L(G)

there is a unique derivation of w by G. We call an annotated grammar G unambiguous

if the underlying CFG over Σ ∪ Σ × Ω is unambiguous. Intuitively, this means that each

output µ ∈ JGK(w) can be produced in only one way. Remember that there are CFGs

G with no unambiguous CFG G′ equivalent to G (i.e., such that L(G′) = L(G)), and

it is undecidable to check whether an input CFG is unambiguous, or has an equivalent

unambiguous CFG. The same is immediately true for annotated grammars.

Problem statement. The goal of this chapter is to study how to efficiently enumerate the

annotations of an annotated grammar:

Input: An annotated grammar G and a string s ∈ Σ∗

Output: Enumerate the outputs of JGK(s)

86

As it was stated, we work in the standard computational model of Random Access Ma-

chines (RAM) with logarithmic word size and uniform cost measure, having addition and

subtraction as basic operations (Aho et al., 1974). The size of G is measured as the sum of

rule lengths.

The ultimate goal of this chapter is to find enumeration algorithms to enumerate the

outputs of annotated grammars with linear preprocessing and output-linear delay. How-

ever, as we will see, this goal is not always realistic, so we will initially settle for a higher

processing time, i.e., quadratic or cubic, before presenting classes with linear preprocess-

ing in data complexity. We present our first results towards this goal in this next section.

4.2. Unambiguous Grammars

In this section we start presenting our results and show a first algorithm to enumerate

the outputs of an annotated grammar on an input string. The algorithm applies to any

unambiguous annotated grammar, and ensures cubic-time preprocessing and output-linear

delay in data complexity; in terms of combined complexity, the preprocessing is linear

on the grammar. This improves the result by Peterfreund (Peterfreund, 2023), which had

quintic-time preprocessing in data complexity.

The section is structured as follows. We present a general-purpose enumeration data

structure called enumerable sets, which is the basis of our enumeration algorithms. We

then introduce the arity-two normal form for annotated grammars, designed to ensure

efficient enumeration, and which can be enforced in linear time. After this, we present

our algorithm and state the main result in this chapter (Theorem 4.2). Last, we state a

conditional data complexity lower bound.

Enumerable sets. The preprocessing phase of our enumeration algorithm builds data

structures representing the set of outputs to enumerate. For this, we essentially re-use

the ε-ECS data structure of Chapter 3, but for convenience we present them in a self-

contained way for our context, and name them enumerable sets. We now define them and

87

state that we can enumerate their contents with output-linear delay (Theorem 4.1). The

enumeration phase of our algorithm simply enumerates the outputs of an enumerable set

using this delay guarantee.

An enumerable set is a representation of a set of strings over some alphabet Ø. For

our case, we want strings of Ø∗ to describe outputs, so Ø consists of pairs of annotations

with positions of the input string w, i.e., Ø := Ω× {1, . . . , |w|}.

The basic enumerable sets are:

• empty, the empty set;

• singleton(ε), the singleton set containing the empty string;

• singleton(x) for x ∈ Ø, the singleton set with the single-character string x.

Enumerable sets can be combined using operators to form more complex enumerable

sets. The operators that we consider all take constant-time and are fully-persistent (Driscoll

et al., 1986a). Specifically, given enumerable sets D1 and D2, combining them creates an

enumerable set without modifying D1 and D2 (i.e., they can still be used in other operator

applications). To make this possible, enumerable sets can share some components, e.g.,

some parts of the arguments D1 and D2 can be shared in memory, and the result can also

have some parts that are shared with D1 and D2. This is similar, e.g., to persistent lists,

where we can only extend a list by adding an element to its head: this does not modify the

original list, and returns a new list sharing some memory with the original list.

The two operators to combine enumerable sets are:

• The union operator union(D1,D2) can be applied if the sets represented by D1

and D2 are disjoint, intuitively to avoid duplicates. It returns an enumerable set

representing the union of these sets,

• The product operator prod(D1,D2) can be applied if there are no common let-

ters in the strings of the sets represented by D1 and D2, i.e., if D1 (resp. D2)

represents S1 (resp. S2) then the sets {x1 ∈ Ø | x1 occurs in some w1 ∈ S1}

88

and {x2 ∈ Ø | x2 occurs in some w2 ∈ S2} are disjoint. Then, the operation

returns an enumerable set D which represents the concatenations of the strings

in D1 and in D2: formally, it represents S1 · S2 = {w1 ·w2 | w1 ∈ S1, w2 ∈ S2}.

It is known that enumerable sets can be enumerated efficiently:

Theorem 4.1. We can implement enumerable sets such that:

• The enumerable sets empty, singleton(ε), and singleton(x) for x ∈ Ø can be

built in constant time;

• The union and product operations can be implemented in constant time and in a

fully persistent way;

• Given an enumerable set, we can enumerate the strings it represents with output-

linear delay and memory usage linear in the number of instructions used to build

it.

We omit a formal proof given that it follows directly from Theorem 3.4.

Arity-two normal form. Having presented enumerable sets, we now present the normal

form to enforce on annotated grammars. Our results could be shown using the commonly

known Chomsky normal form (CNF), but we cannot always obtain an equivalent CNF of

linear size from a grammar. For this reason, we use a variant of CNF, the arity-two normal

form (2NF) (Lange & Leiß, 2009), which is intuitively like CNF but without disallowing

rules of the form X → Y or X → ε. Formally, we say that an annotated grammar

(V,Σ,Ω, P, S) is in arity-two normal form (2NF) if the following hold:

• Every nonterminal X can derive some string, i.e., there exists ŵ ∈ (Σ∪Σ×Ω)∗

such that X ⇒∗G ŵ.

• Every nonterminal X can be reached from the start symbol S, i.e., there exists

α, β ∈ (V ∪ Σ ∪ Σ× Ω)∗ such that S ⇒∗G αXβ.

• For every rule X → α in P , we have |α| ≤ 2, and if α = 2 then it consists of

two nonterminals.

89

We can easily translate annotated grammars to 2NF, as in (Lange & Leiß, 2009):

PROPOSITION 4.1 ((Lange & Leiß, 2009)). Given any annotated grammar G, we can

compute in linear time an annotated grammar G ′ in 2NF such that G and G ′ are equivalent.

Furthermore, if G is unambiguous then G ′ is unambiguous as well.

We omit a proof of this statement here since it follows from the reference. However,

we will prove a stronger version of it in the following sections when further restrictions

for grammars are introduced.

By Proposition 4.1, we assume that the input grammar G is in 2NF.

We also compute in linear time some more information about G. First, we precompute

which nonterminals are nullable, i.e., are such thatX ⇒∗G ε: if we have a ruleX → ε then

X is nullable, and if we have a rule X → Y where Y is nullable or X → Y Z where Y

and Z are nullable then X is also nullable. From this information, we further compute for

each nonterminal Y a set D[Y] of all nonterminals X such that one of the following rules

exist: a rule X → Y , a rule X → Y Z where Z is nullable, or a rule X → ZY where Z is

nullable. We can clearly compute all of this in linear time (note that each rule contributes

at most two entries to D).

Second, as the grammar is assumed to be unambiguous, it also contains no cycles, i.e.,

there are no sequence of nonterminals X1 . . . Xn such that for 1 ≤ i < n, Xi ∈ D[Xi+1]

and X1 ∈ D[Xn]. Indeed, otherwise there would be infinitely many possible derivations

of some string starting at X1, contradicting the unambiguity of G. Thus, we can sort the

nonterminals of G in topological order, by which we mean that when Y ∈ D[X] then Y is

enumerated after X . Intuitively, when we consider a nonterminal X , we want to be done

with processing the nonterminals Y such that X → Y or X → Y Z or X → ZY with Z

nullable. This order can also be computed in linear time.

90

Enumeration algorithm. We now present the preprocessing phase of the enumeration

algorithm, formalized as Algorithm 3 where the input string w = a1 . . . an is assumed

nonempty.

The principle of the algorithm is the following:

PRINCIPLE 4.1. For every triple of the form (i, j,X) with 1 ≤ i < j ≤ n + 1

and X ∈ N , the table cell I[i][j][X] will contain an enumerable set representing the

annotations of the string ai · · · aj−1 that can be derived from symbol X in the grammar.

These sets are initialized to be empty. In lines 5–11 of the algorithm, the cells I[i][j][X]

with j− i = 1 are initialized to consider derivations via “simple rules” of the form X → a

orX → (a, o^). (For now, ignore the role of the endIn table.) Note that the rules of the form

X → ε are considered when defining D and not further examined by the algorithm. At

the end, line 24 returns the enumerable set for the annotations of the entire string derivable

from the start symbol, i.e., the outputs of G on w.

The main part of the algorithm consists in satisfying Principle 4.1 by adding the an-

notations corresponding to “complex” rules (i.e., of the form X → Y Z or X → Y).

At the beginning of the algorithm the cells of the table I might lack some annotations

corresponding to complex rules, but each cell will be considered complete at some point

during the execution, at which point it will satisfy Principle 4.1 and will not be modi-

fied anymore. We define the order in which the cells are considered complete as follows:

(i, j,X) < (i′, j′, X ′) when j < j′ or (j = j′ ∧ i > i′) or (j = j′ ∧ i = i′ ∧ X < X ′)

where we order nonterminals X and X ′ following the topological order from D.

Consider the complex derivations starting from X of the string ai · · · aj−1, i.e., those

that begin with a complex rule. We will see here how to reflect them in I[i][j][X]. There

are two kinds of complex derivations. The first kind is the derivations where we first

rewrite X to another nonterminal Z with a rule X → Z, or by rewriting X to Y Z or ZY

but where Y is nullable and will be rewritten to ε. In these three cases, we haveX ∈ D[Z].

91

Thus, we fill the index I[i][j][X] with the contents of I[i][j][Z], which is already complete,

for X ∈ D[Z] (lines 15-16).

The second kind of complex derivation begins with a complex rule X → Y Z where

neither Y nor Z will be rewritten to ε. In this case, the set of annotations to add into

I[i][j][X] using this rule is the union of products of all the I[i][k][Y] and I[k][j][Z] where

i < k < j. We have (i, k, Y) < (k, j, Z) < (i, j,X), so we can fill I[i][j][X] with

the product of the contents of I[i][k][Y] and I[k][j][Z], at the moment where I[k][j][Z] is

considered complete.

To summarize, from line 12 onwards, the algorithm considers the positions j in as-

cending order, and populates all cells I[i][j][X] so that they are complete. To do so, we

consider the triples (k, j, Z) by increasing order in our sorting criterion, i.e., by decreasing

k, then increasing Z in the order of the topological sort. Whenever we consider a cell, it

is complete, and we consider its contributions to cells of the form I[i][j][X] with i = k

using complex rules of the first kind (lines 15-16), and if it is non-empty we consider

how to combine it with a neighboring cell (which is also complete and non-empty) as we

explained previously, adding the results to a cell I[i][j][X] with i < k which is not yet

complete (lines 17–23).

We now explain the optimization involving the set endIn. It is not necessary to achieve

the cubic running time of this section, but is required for the quadratic bound in Sec-

tion 4.3. The optimization is that, when processing the triple (k, j, Z) and the rule X →

Y Z, we do not test all the possible cells I[i][k][Y], but only those that are non-empty.

Indeed, if I[i][k][Y] is empty, then the concatenation of I[i][k][Y] with I[k][j][Z] is also

empty. Thus, we maintain the list endIn[k][Y] of all the i’s to consider with i < k,

i.e., those such that I[i][k][Y] is non-empty. We initialize this list to be empty, add i to

endIn[k][Y] whenever I[i][k][Y] becomes non-empty (at line 11 in the base case, or at

line 21 before adding to an empty cell for the first time). Then, we only consider the

indices i of this list to combine I[i][k][Y] with another cell.

92

We now argue that our algorithm is correct, and in particular that (i) we satisfy Princi-

ple 4.1; that (ii) all the unions are disjoint, and that (iii) all the products involve enumerable

sets on disjoint alphabets. One can establish (i) by showing by induction over cells that

the invariant is correct when each cell is considered complete by our algorithm (and the

cell is not changed afterwards). Knowing (i), the first violation of (ii) would witness that

the same annotation of some factor ai · · · aj−1 can be derived in two different ways from

a nonterminal X , contradicting unambiguity, so there are no violations of (ii). For (iii),

we simply observe that, by (i), I[i][j][X] only contains pairs of the form (o^, k) for some

i ≤ k < j, so we can indeed perform the product of I[i][k][Y] and I[k][j][Z].

This establishes that the algorithm is correct. Now, the running time of the preprocess-

ing phase of the algorithm is clearly in O(n3|G|), because (1) the endIn lists are of size

O(n) at most, and (2) the consideration of all Z ∈ N and X ∈ D[Z] is in O(|G|): every

X ∈ D[Z] corresponds to a rule, so the consideration of all Z ∈ N and rules in CRule[Z]

is in O(|G|). The enumeration phase is then simply that of Theorem 4.1. Hence, we have

shown that enumeration for unambiguous annotated grammars can be achieved with cubic

time preprocessing and output-linear delay:

Theorem 4.2. Given an unambiguous annotated grammar G and an input string w,

we can enumerate JGK(w) with preprocessing in O(|w|3 · |G|) (hence cubic in data com-

plexity), and output-linear delay (independent from w or G). The memory usage is in

O(|w|3 · |G|).

Lower bounds. We cannot show a lower bound that matches the complexity of our algo-

rithm, but we can prove that we cannot achieve a preprocessing time better than the time to

test whether a string is accepted by a CFG, which is essentially the complexity of Boolean

matrix multiplication (Abboud et al., 2018):

PROPOSITION 4.2. Let ω be the smallest value such that we can multiply two Boolean

n×n matrices in timeO(nω+o(1)). Then for any c > 0 there is an unambiguous annotated

93

Algorithm 3 Preprocessing phase: given a 2NF unambiguous annotated grammar G =
(N,Σ,Ω, P, S) and a non-empty string w = a1 · · · an, compute an enumerable set repre-
senting JAK(w).

1: I← an array (n+ 1)× (n+ 1)×N initialized with empty
2: endIn← an array (n+ 1)×N initialized with empty lists
3: CRule← an array such that CRule[Z] = {X → Y Z ∈ P}
4: D ← an array as described in the presentation of 2NF
5: for 1 ≤ i ≤ n do
6: if rule (X → ai) in P then
7: I[i][i+ 1][X]← union(I[i][i+ 1][X], singleton(ε))

8: for rule (X → (ai, o^)) in P do
9: I[i][i+ 1][X]← union(I[i][i+ 1][X], singleton((o^, i)))

10: if I[i][i+ 1][X] 6= empty then
11: endIn[i+ 1][X].append(i)
12: for j = 1 to n+ 1 do
13: for k = j − 1 downto 1 do
14: for nonterminal Z ∈ N in topological order do
15: for nonterminal X ∈ D[Z] do
16: I[k][j][X]← union(I[k][j][X], I[k][j][Z])

17: if I[k][j][Z] 6= empty then
18: for rule (X → Y Z) in CRule[Z] do
19: for i ∈ endIn[k][Y] do
20: if I[i][j][X] = empty then
21: endIn[j][X].append(i)
22: I[i][j][X]← union(I[i][j][X],
23: prod(I[i][k][Y], I[k][j][Z]))

24: return I[1][n+ 1][S]

grammar G such that, given an input string w, enumerating JGK(w) with output-linear

delay requires a preprocessing time of Ω(|w|ω−c).

PROOF. We know from (Abboud et al., 2018) that for any c > 0, there exists a fixed

grammar G such that determining whether a string w is derived by G, cannot be solved in

time O(|w|ω−c), unless the conjecture in graph algorithms mentioned in (Abboud et al.,

2018) is false.

We will see that this conditional lower bound translates to unambiguous annotated

grammars. Indeed, we will show that for each grammar G there exists an unambiguous

94

annotated grammar G ′ such that w is derived by G if and only if JG ′K(w) is non-empty.

Therefore after the preprocessing of w for G ′, we know in constant time whether w is

derived by G which proves that the preprocessing of G ′ on w requires O(|w|ω−c) time,

assuming the conjecture is true.

Now let us show how to translate a grammar G into an unambiguous annotated gram-

mar G ′. This can be challenging, because G is not necessarily unambiguous: for this reason

we need to define G ′ intuitively by adding annotations that disambiguate the various possi-

ble derivations of G, to guarantee that the result is unambiguous. As this is cumbersome to

do on grammars, we use the correspondence between annotated grammars and pushdown

annotators (Proposition 4.7), shown later in the article.

In this proof, we will use the notion of pushdown automata (PDA); see Definition 4.2

for the formal definition. Let us consider a PDA P which is equivalent to G. As is standard

with PDAs, we can change the given definition to suppose without loss of generality that

no transition in P is an ε-transition. Specifically, we consider PDAs in a slightly different

model where transitions are of the form (q1, a, s1, q2, s2) ∈ Q× Σ× Γ+ ×Q× Γ+: such

a transition means that in state q1, when the top stack symbols are s1 and the next letter

to read is a, the automaton can read the letter, move to state q2 and replace s1 by s2 on

the stack. We create our unambiguous PDAnn P ′ from P by replacing each transition

t = (q1, a, s1, q2, s2) to a set of transitions that first pop the symbols of s1 from the stack,

then reads a, then pushes the symbols of s2 onto the stack. The first state of this transition

is q1, the last state is q2 but we make sure that each of the intermediate states are unique

to t. Furthermore, the transition that reads the letter a outputs a symbol unique to the

transition t. Therefore, by construction there is a bijection between runs of P and runs

of P ′ and the PDAnn P ′ is unambiguous because the run used for each output can be

retrieved from that output.

We conclude by using Proposition 4.7 to obtain an equivalent annotated grammar G ′,

which is also unambiguous. Thus, we know that on any unannotated string w, the set

JG ′K(w) is empty if G does not derive w, and non-empty if it does. Thus, we know that,

95

if we assume the conjecture is true, we cannot determine in O(|w|ω−c) whether JG ′K(w)

is empty or not. But if we have an algorithm to enumerate JG ′K(w) with output-linear

delay, as any output has size O(|w|) in |w|, we can do this with a complexity linear in |w|

which is that of the preprocessing of the enumeration algorithm. Thus, we conclude that

the preprocessing conditionally requires Ω(|w|ω−c) time.

�

4.3. Rigid Grammars

In the previous section, we have shown how to enumerate the output of unambiguous

annotated grammars on strings, with output-linear delay and cubic preprocessing in the

input string. This algorithm has two drawbacks: it requires us to impose that the grammar

is unambiguous, and the cubic preprocessing may be expensive.

In this section, we introduce a new class of annotated grammars, called rigid gram-

mars. Rigid grammars do not need to be unambiguous, but as we will show a rigid gram-

mar can always be converted to additionally impose unambiguity. The point of rigid gram-

mars is that we can show a quadratic bound on Algorithm 3 for them.

We first define rigid grammars in this section. We then state that we can impose un-

ambiguity for rigid grammars, and derive some consequences about their expressiveness

and the complexity of recognizing them. Last, we show a quadratic bound on the prepro-

cessing time for output-linear enumeration for such grammars, and explain why a better

bound would be challenging to achieve.

4.3.1. Definitions

Rigid grammars. We first define the restricted notion of grammars that we study. Con-

sider an annotated grammar G = (N,Σ,Ω, P, S), and a string γ ∈ (Σ∪ (Σ×Ω)∪N)∗ of

nonterminals and of terminals which may carry an annotation in Ω. We will be interested

96

in the shape of γ, written shape(γ): it is the string over {0, 1} obtained by replacing every

nonterminal of N in γ by 1 and replacing all terminals (annotated or not) by 0: note that

|shape(γ)| = |γ|.

We then say that an annotated grammar G is rigid if for every string w ∈ Σ∗, all

derivations from the start symbol S of G to an annotated string ŵ of w have the same

sequence of shapes (remember that we only consider leftmost derivations). Formally, there

exists a sequence s1, . . . , sk ∈ {0, 1}∗ depending only on w such that for any derivation

S = α1 ⇒G α2 ⇒G . . .⇒G αm = ŵ with str(ŵ) = w, we have m = k and shape(αi) =

si for all 1 ≤ i ≤ k.

Intuitively, the sequence of shapes of a derivation describes the skeleton of the corre-

sponding derivation tree. Thus, a rigid annotated grammar is one where, for each unanno-

tated string, all derivation trees for all annotations of the string are isomorphic (ignoring

the labels of nonterminals and the annotation of terminals).

Now we restate Proposition 4.1 while including the angle of rigid grammars.

PROPOSITION 4.3 (Proposition 4.1). Given any annotated grammar G, we can com-

pute in linear time an annotated grammar G ′ in 2NF such that G and G ′ are equivalent.

Furthermore, if G is unambiguous (resp. rigid) then G ′ is unambiguous (resp. rigid) as

well.

PROOF. Conditions 1 and 2: removing useless nonterminals. We first perform a linear-

time exploration from the terminals to mark the nonterminals X that can derive some

string of terminals. The base case is if a nonterminal X has a rule X → α where α

only consists of terminals (in particular α = ε), then we mark it. The induction is that

whenever a nonterminal X has a rule X → α where α only consists of terminals and

of marked nonterminals, then we mark X . At the end of this process, it is clear that

any nonterminal that is not known to derive a string of terminals indeed does not derive

any string, because any derivation of a string of terminals from a nonterminal X would

97

witness that all nonterminals in this derivation, including X , should have been marked,

which is impossible. Hence, we can remove the nonterminals that are not marked without

changing the language or successful derivations of the grammar, and satisfy condition 1 in

linear time.

Second, we perform a linear-time exploration from the start symbol S to mark the

nonterminals X that can be reached in a derivation from S. The base case is that S is

marked. The induction is that whenever a nonterminal Y occurs in the right-hand side of

a rule having X as its left-hand side, and X is marked, then we mark Y . At the end of

the process, if a nonterminal X is not marked, then indeed there is no derivation from S

that produces a string featuring X , as otherwise it would witness that X is marked, which

is impossible. Hence, we can again remove the nonterminals that are not marked, the

grammar and successful derivations are again unchanged, and we satisfy condition 2 in

linear time.

As the transformations here only remove nonterminals and rules that cannot appear in

a derivation, they clearly preserve unambiguity as well as rigidity.

Condition 3: shape of rules. We first ensure that every right-hand side of a rule is of

size ≤ 2. Given the annotated grammar G, for every rule X → α where |α| > 2, letting

α = α1 · · ·αn, we introduce n − 2 fresh nonterminals Xα,1, . . . , Xα,n−2, and replace the

rule by the following: X → α1Xα,1, Xα,1 → α2Xα,2, ..., Xα,n−2 → αn−1αn.

We make sure that the right-hand side of rules of size 2 consist only of nonterminals

by introducing fresh intermediate nonterminals whenever necessary, which rewrite to the

requisite terminal.

It is then clear that the result satisfies condition 3, and that there is a one-to-one cor-

respondence between derivations in the original grammar and derivations in the rewrit-

ten grammar. To see this, note that there is an obvious one-to-one function which maps

derivations from the original grammar into derivations in the new grammar, and that there

is a slightly more involved function which receives a derivation in the new grammar, and

98

builds a derivation in the original grammar by following the steps detailed above (and us-

ing the fact that each fresh nonterminal is associated to exactly one rule), which is also

one-to-one. We conclude that the original grammar is unambiguous if and only if the new

grammar is unambiguous.

The last point to check is that the arity-2 transformation preserves rigidity, i.e., if

the original annotated grammar is rigid then so is the image of the transformation. Let

X be some symbol of the original grammar G, and w ∈ Σ∗ be a string. Let us show

that all derivations from the corresponding symbol X ′ of the rewritten grammar G ′ have

same shape. We do so by induction on the length of w and then on the topological order

on nonterminals. The base case of w of length 0 is clear: the possible derivations are

sequences of applications of rules of the form Y → Z in a sequence of some fixed length,

followed by a rule of the form Y → ε, and what can happen in the rewritten grammar is

the same.

For the inductive case, as G is rigid, we know that there must be one fixed profile

π ∈ {0, 1}k such that all derivations of w from X start by the application of a rule X → α

where α corresponds to profile π, i.e., it has length k and its i-th character is a nonterminal

or terminal according to the value of the i-th bit of π. Otherwise the existence of two

different right-hand-side profiles would contradict rigidity. Furthermore, by considering

the possible sub-derivations from α1 (including the empty derivation if α1 is a terminal),

we know that α1 derives some fixed prefix of w and that all such derivations have the same

sequence of profiles; otherwise we would witness a contradiction to rigidity. By applying

the same argument successively to α2, . . . , αk, we deduce that there must be a partition of

w = w1 · · ·wk such that, in all derivations of w from X , the derivation applies a rule with

right-hand having profile π to produce some string α1 · · ·αk, and then each αi derives an

annotation of wi and for each i all possible derivations of some annotation of wi by some

i-th element in the right-hand size of such a rule has the same sequence of profiles.

As the string is nonempty we know that k > 0. Further, if k = 1 then X and the

productions involving X were not rewritten so we immediately conclude either with the

99

case of a rule X → τ for a terminal τ or by induction hypothesis on the nonterminals in

the topological order for the case of a rule of the form X → Y . Hence, we assume that

k ≥ 2.

We know by induction that, in the rewritten grammar, the derivation from X will

start by rewriting X to Y1Xα,1, the Xα,1 being itself rewritten to Y2Xα,2, and so on, for

some right-hand size α of a rule X → α having profile π. Clearly each Yi will have

to derive an annotation of the wi in the partitioning of w, as a derivation following a

different partitioning would witness a derivation in the original grammar that contradicts

rigidity. Now, the profile π indicates if each Yi is a nonterminal of the initial grammar

or a fresh nonterminal introduced to rewrite to a terminal. In the latter case, there is no

possible deviation in profiles. In the former case, we conclude by induction hypothesis

that each Yi derives annotations of its wi that all have the same profile, and we conclude

that all derivations in the rewritten grammar indeed have the same profile, concluding the

proof. �

Rigidity vs unambiguity. Unambiguity and rigidity for annotated grammars seem incom-

parable: unambiguity imposes that every annotation is produced by only one derivation,

whereas rigidity imposes that all derivations across all annotations have the same shape

(but the same annotation may be obtained multiple times).

However, it turns out that, on rigid grammars, we can impose unambiguity without loss

of generality: all rigid grammars can be converted to equivalent rigid and unambiguous

grammars.

Theorem 4.3. For any rigid grammar G we can build an equivalent rigid and unam-

biguous grammar G ′. The transformation runs in exponential time, i.e., time O(2|G|
c
) for

some c > 0.

PROOF. In this proof, we will use the notion of PDAnn introduced in Section 4.4, and

we will use Proposition 4.7, which is also stated in Section 4.4.

100

To prove Theorem 4.3, we introduce a general-purpose normal form on PDAnn, where,

intuitively, the only choices that can be made during a run are between the types of transi-

tion to apply.

Definition 4.1. A PDAnn P is deterministic-modulo-profile if it satisfies the following

conditions:

(i) for each state p there is at most one push transition that starts on p, formally

|{q, γ ∈ Q× Γ | (p, q, γ) ∈ ∆}| ≤ 1

(ii) for each state p and stack symbol γ there is at most one pop transition that starts

on p, γ, formally |{q ∈ Q | (p, γ, q) ∈ ∆}| ≤ 1

(iii) for each state p, letter a, and output o^∈ Ω, there is at most one read-write tran-

sition that starts on p, a, o^, formally, we have |{q ∈ Q | (p, (a, o^), q) ∈ ∆}| ≤ 1.

(iv) for each state p and letter a, there is at most one read transition that starts on

p, a, formally |{q ∈ Q | (p, a, q) ∈ ∆}| ≤ 1.

Lemma 4.1. Let P be a PDAnn. We can build an equivalent PDAnn P ′ which is

deterministic-modulo-profile. The transformation takes exponential time, i.e., timeO(2|P|
c
)

for some c > 0.

Further, on any string w, there is an accepting run of P on w with profile π iff there is

an accepting run of P ′ on w with the same profile.

PROOF. The proof is similar to the determinization of visibly pushdown automata (see

Section 3.6, also Proposition 3.2).

Given P = (Q,Σ,Ω,Γ,∆, q0, F), we build P ′ = (Q′,Σ,Ω,Γ′,∆′, SI , F
′) as follows.

We build Q′ = 2Q×Q, intuitively denoting a set of pairs of states (p, q) of P such that

P can be at state q at this point if it was at state p when the topmost stack symbol was

pushed. We build Γ′ = 2Q×Γ×Q, intuitively specifying the sets of possible stack symbols

and remembering the state just after the previous stack symbol was pushed and the state

just after that symbol was pushed. We build SI = {(q0, q0)}, meaning that initially we are

101

at the initial state q0 and were here when the stack was initialized. We build F ′ = {S |

(q0, q) ∈ S for some q ∈ F}, meaning that we accept when P reaches a final state and we

were at the initial state when the stack was initialized. Let ∆′ be defined as follows:

• The (unique) push transition from a state S ∈ Q′ makes P ′ push a stack symbol

S ′ and move to a state T , intuitively defined as follows. For every pair (p, p′)

of S and push transition (p′, q, γ) ∈ ∆ in the original PDAnn, we can move to

state (q, q) and push on the stack the symbol (p, γ, q). The stack symbol S ′ is

the set of all possible stack symbols that can be pushed in this way, and T is the

set of all possible states that can be reached in this way.

Formally, for every S ∈ Q′ we include (S, S ′, T) in ∆′, where:

T = {(p, γ, q) | (p, p′) ∈ S and (p′, q, γ) ∈ ∆ for some p, p′, q ∈ Q, γ ∈ Γ},

S ′ = {(q, q) | (p, p′) ∈ S and (p′, q, γ) ∈ ∆ for some p, p′, q ∈ Q, γ ∈ Γ}

• The (unique) pop transition from a state S ∈ Q′ and topmost stack symbol

T ∈ Γ′ makes P ′ move to a state T ′ intuitively defined as follows. For every

pair (p′, q′) of S, we consider all triples (p, γ, p′) of the topmost stack symbol T ,

and if the original PDAnn had a pop transition (q′, γ, q) ∈ ∆, then we can pop

the topmost stack symbol and go to the state (p, q). The new state T ′ is the set

of all pairs (p, q) that can be reached in this way.

Formally, for every (S, T) ∈ Q′ × Γ′ we include (S, T, S ′) in ∆′, where:

S′ = {(p, q) | (p, γ, p′) ∈ T and (p′, q′) ∈ S and (q′, γ, q) ∈ ∆ for some p, p′, q, q′ ∈ Q, γ ∈ Γ},

• The (unique) read-write transition from a state S ∈ Q′ on a letter a ∈ Σ and

output o^ ∈ Ω makes P ′ move to a state S ′ intuitively defined as follows: we

consider all pairs (p, p′) in S and all transitions from p′ with a and o^ in P to

some state q, and move to all possible pairs (p′, q).

102

Formally, for every (S, a, o^) ∈ Q′×Σ×Ω we include (S, (a, o^), S ′) in ∆′, where:

S ′ = {(p, q) | (p, p′) ∈ S and (p′, (a, o^), q) ∈ ∆ for some p, p′, q ∈ Q}.

• The (unique) read transition from a state S ∈ Q′ on a letter a ∈ Σ makes P ′

move to a state S ′ intuitively defined as follows: we consider all pairs (p, p′) in

S and all transitions from p′ with a in P to some state q, and move to all possible

pairs (p′, q).

Formally, for every (S, a) ∈ Q′ × Σ we include (S, a, S ′) in ∆′, where:

S ′ = {(p, q) | (p, p′) ∈ S and (p′, a, q) ∈ ∆ for some p, p′, q ∈ Q}.

It is clear by definition that P ′ is deterministic-modulo-profile, and it is clear that the

running time of the construction satisfies the claimed time bound.

We now show that P and P ′ are equivalent.

Now, for the forward direction, let us first assume without loss of generality that when-

ever P makes a push transition then the stack symbol that it pushes is annotated with the

state reached just after the push. Then we will show that every instantaneous description

that can be reached by P can be reached by P ′ by induction on the run. Specifically, we

show by induction on the length of the run ρ the following claim: if P has a run ρ on

a string w that produces µ from an initial state q0 ∈ T to an instantaneous description

(q, i), α, with α = γ0p0, . . . , γmpm being the sequence of the stack symbols and states an-

notating them, then P ′ has a run ρ′ on w from SI to an instantaneous description (S, i), α′

with α′ = T0 . . . Tm such that T0 contains (q0, γ0, p0), T1 contains (p0, γ1, p1), ..., Tm

contains (pm−1, γm, pm) and S contains (pm, q); further ρ and ρ′ have the same profile.

The base case of an empty run on a string is immediate: if P has an empty run from

an initial state q0, then it reaches the instantaneous description with (q0, 0) and the empty

stack, and then P ′ then has an empty run reaching the instantaneous description (S, 0)

with the empty stack and S indeed contains (q0, q0).

103

For the induction case, assume that P has a non-empty run ρ+ on a string w that

produces µ. First, write ρ+ as a run ρ followed by one single transition of P . We know P

has a run ρ on w which produces µ from an initial state q0 to an instantaneous description

(q, i), α, with α = γ0p0, . . . , γmpm. By the induction hypothesis, we know that P ′ has

a run ρ′ on w from (q0, q0) to an instantaneous description (S, i), α′ with α′ = T0 . . . Tm

such that T0 contains (q0, γ0, p0), T1 contains (p0, γ1, p1), ..., Tm contains (pm−1, γ, pm)

and S contains (pm, q); and ρ′ and ρ have the same profile. We now distinguish on the

type of the transition used to extend ρ to ρ+.

If that transition is a read-write transition (q, (a, o^), q′), we consider the read-write

transition of P ′ labeled with (a, o^) from T , and call S ′ the state that P ′ reaches. As

(pm, q) ∈ S and (q, (a, o^), q′) ∈ ∆, we know that (pm, q
′) ∈ S ′. Thus, P ′ can read (a, o^)

and reach a suitable state S ′ and position i + 1 and the stacks are unchanged so the claim

is proven.

If that transition is a read transition (q, a, q′), we follow an analogous reasoning.

If that transition is a push transition (q, q′, γ), the position of P is unchanged and the

new stack is extended by γ annotated with state q′. Consider the push transition of P ′

from q, and call S ′ the state reached and T = Tm+1 the stack symbol that is pushed. As

(pm, q) ∈ S and (q, q′, γ) ∈ ∆, we know that T contains (pm, γ, q
′), and S ′ contains

(q′, q′), which is what we needed to show.

If that transition is a pop transition, (q, γm, q
′), the position of P is unchanged and

the topmost stack symbol is removed. Consider the topmost stack symbol Tm and the

transition of P ′ that pops it from S, and call S ′ the state that we reach. We know that

S contains (pm, q) and Tm contains (pm−1, γm, pm) and (q, γm, q
′) ∈ ∆, so S ′ contains

(pm−1, q
′), which is what we needed to show.

Note that, in all four cases, the profile of ρ+ and ρ′+ is the same, because this was true

of ρ and ρ′, and the type of transition done to extend ρ′ to ρ′+ is the same as the type of

transition done to extend ρ to ρ+.

104

The inductive claim is therefore shown, and thus if P has a run ρ on some string w that

produces µ starting at some initial state q0 and ending at state q, then P ′ has a run ρ′ on w

which produces µ and ending at a state of the form (q0, q) for q0 and having same profile.

Thus, if ρ is accepting then q is final for P and (q0, q) is final for P ′ so ρ′ is accepting.

This concludes the forward implication.

We now show the backward implication, and show it again by induction, again assum-

ing that P annotates the symbols of its stack with the state reached just after pushing them.

We show by induction on the length of a run ρ′ the following claim: if P ′ has a run ρ′ on

a string w that produces µfrom its initial state to an instantaneous description (S, i), α′

with α′ = T0, . . . , Tm being the sequence of the stack symbols, then for any choice of

elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm and (pm, q) ∈ S it

holds that P has a run ρ on w producing µ from some initial state q0 to the instantaneous

description (q, i), α with α = γ0q0, . . . , γmqm (writing next to each stack symbol the state

that annotates it), and ρ′ and ρ have the same profile.

The base case of an empty run on a string is again immediate: if P ′ has an empty run

from its initial state, then it reaches the instantaneous description with (SI , 0) and empty

stack, and then P has an empty run from any initial state q0 to q0 so that indeed SI contains

(q0, q0).

For the induction case, assume that P ′ has a non-empty run ρ′+ on w which produces

µ, We write again ρ′+ as a run ρ′ followed by one single transition of P ′. We know P ′ has

a run ρ′ on w which produces µ from the initial state SI to an instantaneous description

(S, i), α′, with α = T0 . . . Tm. By the induction hypothesis, we know that for any choice

of elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm and (pm, q) ∈ S,

then P has a run ρ on w which produces µ from some initial state q0 to the instantaneous

description (q, i), α with α = γ0q0, . . . , γmqm, and ρ and ρ′ have the same profile. We now

distinguish on the type of transition used to extend ρ′ to ρ′+.

105

If the last transition is a read-write transition (S, (a, o^), S ′) with S ′ defined as in the

construction, consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈

Tm and (pm, q
′) ∈ S ′, and then there must be some state p′′ such that (p′′, (a, o^), q) ∈ ∆

and (pm, p
′′) ∈ S. Using the induction hypothesis but picking (pm, p

′′) ∈ S, we obtain a

run ρ of P on w which produces µ, with the correct stack and ending at position i on state

p′′, which we can extend by the read transition (p′′, (a, o^), q) to reach state q at position

i+ 1 without touching the stack, proving the result.

If the last transition is a read transition (S, a, S ′) with S ′ defined as in the construction,

we follow an analogous reasoning.

If the last transition is a push transition (S, S ′, T) with T defined as in the construction,

consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈ Tm,

(pm, γm+1, pm+1) ∈ Tm+1 and (pm+1, q
′) ∈ S ′. We know that we must have q′ = pm+1,

and that there must be some state p′′ and push transition (p′′, pm+1, γm+1) and pair (pm, p
′′)

in S. Using the induction hypothesis but picking (pm, p
′′) ∈ S, we obtain a run ρ of P

on w which produces µ with topmost stack symbol γm, ending at state p′′, which we can

extend with the push transition (p′′, pm+1, γm+1) to obtain the desired stack and reach state

pm+1 = q′, proving the result.

If the last transition is a pop transition (S, T, S ′) with S ′ defined as in the construction,

consider any choice of (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−2, γm−1, pm−1) ∈ Tm−1,

and (pm−1, q) ∈ S ′. We know that there is a pair (p′, q′) ∈ S and a triple (pm−1, γm, p
′) in

Tm and a pop transition (q′, γm, q) in ∆. Applying the induction hypothesis, we get a run

ρ of P on w which produces µ and with topmost stack symbol γm annotated with state p′

and ending at state q′. The pop transition (q′, γm, q) allows us to extend this run to reach

state q and remove the topmost stack symbol, while the rest of the stack is correct, proving

the result.

Again, we have ensured that ρ is extended to ρ+ with the same transition as the tran-

sition used to extend ρ′ to ρ′+, ensuring that ρ+ and ρ′+ have same profile. This concludes

106

the proof of the backward induction, ensuring that if P ′ has a run from SI to some final

state S reading a string w and producing µ, and having (q0, qf) with qf ∈ F in S, then P

has a run reading w which produces µ going from q0 to the final state qf . This concludes

the backward implication and completes the proof. �

We can now show Theorem 4.3 via Proposition 4.7, using also the notion of profiled

PDAnn defined in Section 4.4:

Let G be a rigid annotated grammar. Using Proposition 4.7, we transform it in poly-

nomial time to a profiled PDAnn P . Using Lemma 4.1, we build in exponential time an

equivalent PDAnn P ′ satisfying the conditions of the lemma.

We know that P ′ is still profiled. Indeed, if we assume by contradiction that there

is a string w on which P ′ has two accepting runs with different profiles, then by the last

condition of Lemma 4.1, the same is true of P , contradicting the fact that P is profiled.

Now, we claim that P ′ is necessarily also unambiguous. To see why, consider two

accepting runs ρ and ρ′ of P ′ on some string w. Since P ′ is profiled, ρ and ρ′ must have

the same profile. But now, the conditions of Lemma 4.1 ensure that, knowing the input

string w and profile, the runs ρ and ρ′ are completely determined. Specifically, this is an

immediate induction on the run. The base case is that there is only one initial state, so both

ρ and ρ′ must have the same initial state. Now, assuming by induction that the runs so far

are identical and have the same stack, there are three cases. First, if the profile tells us that

both runs make a push transition, the symbol pushed and state reached are determined by

the last states of the runs so far, which are identical by inductive hypothesis. Second, if

the profile tells us that both runs make a read-write transition (or read transition), the state

reached is determined by the input and output symbols (or just the input symbol), and by

the last states of the run so far, which are identical by inductive hypothesis. Third, if the

profile tells us that both runs make a pop transition, the state reaches is determined by the

last state of the run so far, and the topmost symbol of the stack, which are identical by

inductive hypothesis. This concludes the inductive proof.

107

Thus, for any two accepting runs ρ and ρ′ on the string w which produce the same

output, they must identical. Thus, P ′ is unambiguous. We use Theorem 4.7 to transform

P ′ back into an annotated grammar, which is still rigid and unambiguous, and equivalent

to the original rigid annotated grammar G. The overall complexity of the transformation

is in O((2(|G|c)c
′
)c
′′
) for some c, c′, c′′ > 0, so it is in O(2|G|

d
) for some d > 0 overall, and

the time complexity is as stated. �

Expressiveness of rigid grammars. Armed with Theorem 4.3, we study what is the

expressive power of rigid grammars. For this, let us first go back to the setting without

annotations. Theorem 4.3 tells us that for (unannotated) CFGs the rigidity requirement

is equivalent to the usual unambiguity requirement: each accepted word has a unique

derivation. Now, for the case of an annotated grammar G, rigidity additionally imposes the

requirement that all annotations of an input string have the same parse tree. In particular,

the language of the strings where G accepts some annotation must be recognizable by a

rigid (unannotated) CFG, hence an unambiguous CFG (by Theorem 4.3). Formally:

PROPOSITION 4.4. For a rigid grammar G, let L′ be the set of strings with nonempty

output, i.e., L′ = {w | JGK(w) 6= ∅}. Then L′ is recognized by an unambiguous CFG.

PROOF. This proof is based on extending the definitions of unambiguity and rigidness

of annotated grammars over unannotated context-free grammars. Indeed, an unambiguous

annotated grammar with an empty output set is just an unambiguous CFG, and a rigid

annotated grammar with an empty output set is a CFG for which every derivation of a

given string w ∈ Σ∗ has the same shape.

Consider the (unannotated) grammar G ′ obtained from G by removing all annotations

on terminals, and making Ω = ∅. It can be seen that L(G ′) = L′ since for each string

w, if w ∈ L(G ′), then there is at least one ŵ ∈ L(G) with str(ŵ) = w and vice versa.

Now, we claim that G ′ is rigid, by extending the notion onto CFGs in the obvious way. To

see this, consider a string w ∈ L(G ′); all derivations of w by G ′ correspond to derivations

by G of some ŵ such that str(ŵ) = w. Because G is rigid, all these derivations have the

108

same shape. Now, using Theorem 4.3, we can compute a rigid and unambiguous grammar

G ′′ recognizing the same language over Σ∗ as G ′, i.e., L′. But as L′ is a language without

output, the unambiguity of G ′′ actually means that G ′′ is an unambiguous CFG. Hence, L′

is recognized by an unambiguous grammar, concluding the proof. �

This yields concrete examples of languages (on the empty annotation alphabet) that

cannot be recognized by a rigid annotated grammar, e.g., inherently ambiguous context-

free languages such as La = {aibjck | i, j, k ≥ 1∧ (i = j ∨ j = k)} on {a, b, c}∗ (Maurer,

1969). Proposition 4.4 also implies that we cannot decide if the language of an annotated

grammar can be expressed instead by a rigid grammar, or if an annotated grammar is rigid:

PROPOSITION 4.5. Given an unannotated grammar G, it is undecidable to determine

whether G is rigid, and it is undecidable to determine whether there is some equivalent

rigid grammar G ′.

PROOF. We first show the undecidability of checking if an annotated grammar has an

equivalent rigid annotated grammar:

CLAIM 4.1. Consider the problem, given an annotated grammar G, of determining

whether there exists some equivalent rigid annotated grammar equivalent to G. This prob-

lem is undecidable.

PROOF. We reduce from the problem of deciding whether the language L2 of an input

(unannotated) context-free grammar G2 can be recognized by an unambiguous context-

free grammar: this task is known to be undecidable (Ginsburg & Ullian, 1966). Consider

G2 as an annotated grammar (with empty annotations). Let us show that L2 can be recog-

nized by a rigid annotated grammar iff it can be recognized by an unambiguous context-

free grammar, which concludes. For the forward direction, if L2 can be recognized by an

unambiguous context-free grammar, then that grammar is in particular rigid. For the back-

ward direction, if L2 can be recognized by a rigid grammar, then Proposition 4.4 implies

109

that L2 can also be recognized by an unambiguous context-free grammar. Thus, we have

showed that the (trivial) reduction is correct. �

We next show that it is undecidable to check if an input annotated grammar is rigid:

CLAIM 4.2. Consider the problem, given an annotated grammar G, of determining

whether it is rigid. This problem is undecidable.

PROOF. We adapt the standard proof of undecidability (Chomsky & Schützenberger,

1959, Ambiguity Theorem 2) for the problem of deciding, given an input unannotated

grammar G, if it is unambiguous. The reduction is from the Post Correspondence Problem

(PCP), which is undecidable: we are given as input sequences α1, . . . , αn and β1, . . . , βn

of strings over some alphabet Σ, and we ask whether there is a non-empty sequence of

indices i1, . . . , im of integers in [1, n] such that αi1 . . . αim = βi1 . . . βim . Given the input

sequences α1, . . . , αn and β1, . . . , βn to the PCP, we consider the alphabet Σ′ = Σ ∪

{1, . . . , n}, and we consider the CFG having nonterminals S, S1, and S2, start symbol S,

and rules S → S1, S → S2, S1 → ε, S2 → ε, and for each 1 ≤ i ≤ n the productions

S1 → αiS1i and S2 → βiS2i.

We claim that this grammar is ambiguous iff there is a solution to the Post correspon-

dence problem. Indeed, given any solution αi1 · · ·αim = βi1 . . . βim , considering the string

αi1 · · ·αimim · · · i1 = βi1 . . . βimim · · · i1, we can parse it with one derivation featuring S1

and one derivation featuring S2. Conversely, if we can parse a string w ∈ Σ∗ with two

different derivations, we know that there cannot be two different derivations featuring S1.

Indeed, reading the string from right to left uniquely identifies the possible derivations

from S1. The same argument applies to derivations featuring S2. Hence, if the grammar

is ambiguous, then there is exactly one derivation featuring S1 and exactly one derivation

featuring S2. These two derivations can be used to find a solution to the Post correspon-

dence problem.

110

We now adapt this proof to show the undecidability of rigidity. We say that an input

to the PCP is trivial if there is i such that αi = βi. We can clearly decide in linear time,

given the input to the PCP, if it is trivial. Hence, the PCP is also undecidable in the case

where the PCP is non-trivial. Now, when doing the reduction above on a PCP instance

that is not trivial, we observe that two derivations of the same string can never have the

same sequences of shapes. Indeed, if we have two derivations of the same string, then as

we explained one must feature S1 and the other must feature S2, and they give a solution

αi1 · · ·αim = βi1 . . . βim to the PCP. Assume by contradiction that both derivations have

the same sequences of shapes. Then, it means that we have
∣∣αij ∣∣ =

∣∣βij ∣∣ for every 1 ≤

j ≤ m. In particular we have |αi1| = |βi1|, and so we know that αi1 = βi1 and the PCP

instance was trivial, a contradiction.

Hence, let us reduce from the PCP on non-trivial instances to the problem of deciding

whether an input annotated grammar is not rigid. Given a non-trivial PCP instance, we

construct G as above, but seeing it as an annotated grammar with no outputs. Then G is

not rigid iff there is a string w such that the empty annotation of w has two derivations that

do not have the same sequence of shapes. But this is equivalent to G being unambiguous

when seen as a CFG. Indeed, for the forward direction, if G has two such derivations on a

string w then clearly w witnesses that G is ambiguous when seen as a CFG. Conversely,

if G is ambiguous when seen as a CFG, we have explained in the previous paragraph that

the two derivations must have different sequences of shapes, so G is not rigid. Hence, we

conclude that there is a solution to the input non-trivial PCP instance iff G is not rigid.

This establishes that the problem is undecidable and concludes the proof. �

The proof follows from Claims 4.1 and 4.2. �

These undecidability results make rigid grammars less appealing, but note that our

enumeration algorithm for such grammars applies in particular to decidable grammar

classes which are designed to ensure rigidity. For instance, this would be the case of

111

grammars arising from visibly pushdown automata, which we discuss in more detail in

the next section.

Enumeration algorithm. We now give our algorithm with quadratic preprocessing time

for rigid grammars. Given a rigid grammar, we first make it unambiguous if necessary,

using Theorem 4.3, in exponential time in the input grammar. The result is a rigid and

unambiguous annotated grammar. Now, we transform it in 2NF like in Section 4.3: this

takes linear time, preserves unambiguity, and one can check that it also preserves rigidity.

Armed with our rigid and unambiguous grammar G in 2NF, we can simply use Al-

gorithm 3 to construct a data structure allowing us to enumerate the outputs with output-

linear delay. But we now claim that Algorithm 3 runs in time O(|G| · |w|2) because G

is rigid.

For this, we study for every nonterminalX and pair 1 ≤ i ≤ j ≤ n+1 how many times

we can consider the cell I[i][j][X] in lines 20–23. Whenever we consider it, we witness

the existence of a complex rule X → Y Z and a value k such that I[i][k][Y] and I[k][j][Z]

are nonempty (the first is because i ∈ endIn[k][Z]). Thus, we witness a derivation from

X of some annotation of the string ai · · · aj−1 that starts with a rule X → Y Z where

Y derives some annotation of the string ai · · · ak−1 and Z derives some annotation of the

string ak · · · aj−1. We now claim that, for (i, j,X), the rigidity of the grammar ensures that

there is only one such value k. Indeed, assume by contradiction that we have two rules

X → Y Z and X → Y ′Z ′ and two values i ≤ k < k′ ≤ j such that Y and Y ′ respectively

derive some annotation of the strings ai · · · ak−1 and ai · · · ak′−1, and Z and Z ′ respectively

derive some annotation of the strings ak · · · aj−1 and ak′ · · · aj−1. Then once we are done

rewriting Y and all the nonterminals that it generates in the first derivation, we obtain a

different shape from what we obtain after rewriting Y ′ and all the nonterminals it generates

in the second derivation, contradicting the rigidity of the grammar.

Thus, whenever we consider the cell I[i][j][X] in lines 21–23, it is for one value of k

which is unique for (i, j,X), and we thus consider the cell once at most for every complex

112

rule of the grammar with X as left-hand-side. Thus, we consider the cells of I[i][j] at

most |G| times in total. As there are O(n2) pairs (i, j), this ensures that the total running

time of the innermost for loop (lines 19–23), and that of the entire algorithm, is indeed in

O(|G| · |w|2):

Theorem 4.4. Given a rigid annotated grammar G and an input string w, we can

enumerate JGK(w) with preprocessing inO(|w|2) data complexity and output-linear delay

(independent fromw or G). The combined complexity of the preprocessing isO(2|G|
c ·|w|2)

for some c > 0, or O(|G| · |w|2) if G is additionally assumed to be unambiguous.

Optimality. We now turn to the question of whether the quadratic preprocessing time for

rigid grammars is optimal. For this, we notice that the parsing of (unannotated) unam-

biguous grammars can be performed in quadratic time, but the question of finding a better

algorithm was open as of 2012 (Schmitz, 2012). Now, this is a special case of our problem,

because an unannotated unambiguous grammar is in particular a rigid and unambiguous

annotated grammar, and enumerating the outputs of an unannotated grammar just means

deciding in constant time after the preprocessing whether the input unannotated string is

accepted or not. Thus:

PROPOSITION 4.6. Any algorithm to enumerate the accepted outputs of a rigid an-

notated grammar can be used to test if an input string is accepted by an unambiguous

unannotated grammar, with same complexity as that of the preprocessing phase.

PROOF. Assume we have such an algorithm A. Consider a procedure which receives

an unambiguous unannotated CFG G and an input string w, converts G into an annotated

grammar G ′ with empty output set. Since G ′ is unambiguous and rigid, we can runA over

G ′ and w. If w ∈ L(G), then JG ′K(w) = {ε}, and if w 6∈ L(G), then JG ′K(w) = ∅. Thus,

after the preprocessing phase of A we need only to wait a constant amount of time to see

if the string ε is given as output, or none is. We conclude that this procedure solves the

problem with the same complexity as the preprocessing phase of A. �

113

For this reason, we leave open the question of whether a better than quadratic prepro-

cessing time can be achieved in this case.

4.4. Pushdown Annotators

We have presented an enumeration algorithm for annotated grammars that achieves

quadratic-time preprocessing and output linear delay on rigid annotated grammars. We

now study whether the bound can be improved even further to achieve linear-time prepro-

cessing and output-linear delay, which is the best possible data complexity bound in our

model.

To achieve this, it is natural to look for a class of grammars having some “determin-

istic” behavior. Unfortunately, grammars are not convenient for this purpose, and so we

move to the equivalent model of pushdown automata. We thus introduce pushdown an-

notators and show that they are equally expressive to annotated grammars. We present

syntactic restrictions on pushdown annotators that ensure quadratic-time preprocessing,

similarly to rigid grammars. Then, we propose additional deterministic conditions on

pushdown annotators that allow for linear-time preprocessing.

Pushdown annotators. A pushdown annotator (PDAnn) is a tuple P = (Q,Σ,Ω,Γ,∆,

q0, F) where Q is a finite set of states, Σ is the alphabet, Ω is a finite set of annotations, Γ

is a finite set of stack symbols, q0 ∈ Q is the initial state, and F ⊆ Q are the final states.

We assume that the set Γ of stack symbols is disjoint from (Σ ∪ Σ × Ω). Finally, ∆ is a

finite set of transitions that are of the following kinds:

• Read-write transitions of the form (p, (a, o^), q) ∈ Q × (Σ × Ω) × Q, meaning

that, if the next letter of the string is a, the annotator can go from states p to q

while reading that letter and writing the annotation o^;

• Read-only transitions of the form (p, a, q) ∈ Q × Σ × Q, meaning that the

annotator can go from p to q while reading a;

114

• Push transitions of the form (p, q, γ) ∈ Q× (Q×Γ), meaning that the annotator

can go from p to q while pushing the symbol γ on the stack;

• Pop transitions of the form (p, γ, q) ∈ (Q×Γ)×Q, meaning that, if the topmost

symbol of the stack is γ, the annotator can go from p to q while removing this

topmost symbol γ.

We now give the semantics of PDAnns. Fix a string w = w1 · · ·wn ∈ Σ∗. A configu-

ration of P over w is a pair C = (q, i) ∈ Q× [0, n] of the current state and position in w.

An instantaneous description of P is a pair (C, α) where C is a configuration and α ∈ Γ∗

describes the stack. A run of P over w is a sequence:

ρ := (C0, α0)
t1−→ (C1, α1)

t2−→ . . .
tm−→ (Cm, αm) (4.1)

such that C0 = (q0, 0) and α0 = ε, each tk is a transition in ∆, and for each k ∈ [1,m]

the following hold:

• if tk is a read-write transition (p, (a, o^), q) or a read-only transition (p, a, q), then

αk = αk−1, Ck−1 = (p, i− 1), Ck = (q, i) and a = ai for some i ∈ [1, n];

• if tk is a push transition (p, q, γ), then αk = αk−1γ and for some i ∈ [1, n],

Ck−1 = (p, i), Ck = (q, i); and

• if tk is a pop transition (p, γ, q), then αk−1 = αkγ and for some i ∈ [1, n],

Ck−1 = (p, i), Ck = (q, i).

We say that ρ is accepting if (Cm, αm) = ((qf , n), ε) for some qf ∈ F . We define the

annotation of ρ as ann(ρ) = ann(t1, C1) · · · · · ann(tm, Cm) such that ann(t, C) = ε if t

is a push, pop, or a read-only transition (p, a, q), and ann(t, C) = (i, o^) if t is a read-write

transition (p, (a, o^), q) and C = (q, i). Finally, we define the function JPK that maps any

w ∈ Σ∗ to its set of outputs:

JPK(w) = {ann(ρ) | ρ is an accepting run of P over w}.

115

Similarly to annotated grammars, we say that P is unambiguous if for every w ∈ Σ∗ and

output µ, there exists at most one accepting run ρ of P over w such that ann(ρ) = µ.

One can alternatively see a PDAnn as a pushdown transducer (Berstel, 2013), which is

the standard way to extend automata to have an output. However, an important difference

is that a PDAnn concisely represents outputs by only writing the annotations and their

positions: this can be much smaller than the input string, and cannot easily be encoded

as a transducer on a finite alphabet. For instance, where a PDAnn can produce an output

such as (2, o^), (5, o′̂), a transducer would either write o^o′̂ (losing the position information)

or o^ o′̂ (whose length is always linear in the input) for a special symbol .

Profiled PDAnns and annotated grammars. To define the analogue of rigid annotated

grammars on PDAnn, we will study the stack profile (or simply profile) of PDAnn runs,

which is informally the sequence of all stack heights. Formally, let P be a PDAnn, w be a

string, and consider a run ρ of T over w like in (†). The profile π of ρ is the sequence π :=

|α0| , . . . , |αm|. We then introduce profiled PDAnns by requiring that all accepting runs of

the PDAnn on an input string have the same profile (no matter their output). Formally, we

say that a PDAnn P is profiled if, for every string w, all accepting runs of T over w have

the same profile.

As usual for context-free grammars and pushdown automata, the formalisms of an-

notated grammars and PDAnn have the same expressive power. We call two annotated

grammars G and G ′ equivalent if they define the same functions, i.e., JGK = JG ′K, and

extend this notion to PDAnn in the expected way. We then have:

PROPOSITION 4.7. Annotated grammars and PDAnn are equally expressive. Specifi-

cally, for any annotated grammar G, we can build an equivalent PDAnn P in polynomial

time, and vice versa. Further, G is unambiguous (resp., rigid) iff P is unambiguous (resp.,

profiled).

116

PROOF. In this proof, we will need to use the standard notion of a pushdown automa-

ton (PDA), whose definition has been omitted so far. We give it here:

Definition 4.2. A pushdown automaton (PDA) is a tuple A = (Q,Σ,Γ,∆, q0, F),

where Q is a finite set of states, Σ is the alphabet, Γ is a finite alphabet of stack symbols,

q0 ∈ Q is the initial state, F ⊆ Q are the final states. We assume that Γ is disjoint from Σ.

Further, ∆ is a finite set of transitions of the following kind:

• Read transitions of the form (p, a, q) ∈ Q×Σ×Q, meaning that the automaton

can go from state p to state q while reading the letter a;

• Push transitions of the form (p, q, γ) ∈ Q×Q× Γ, meaning that the automaton

can go from state p to state q while pushing the symbol γ on the stack;

• Pop transitions of the form (p, γ, q) ∈ Q × Γ × Q, meaning that, if the topmost

symbol of the stack is γ, the automaton can go from p to q while removing this

topmost symbol γ.

We omit the definition of the semantics of PDAs, which are standard, and allow us to

define the language L(A) accepted by a PDA. It is also well-known that CFGs and PDAs

have the same expressive power, i.e., given a CFG G, we can build in polynomial time a

PDA A which is equivalent in the sense that L(G) = L(A), and vice-versa.

We will also need to use the standard notion of a deterministic PDA (with acceptance

by final state). Formally:

Definition 4.3. Let A = (Q,Σ,Γ,∆, q0, F) be a PDA. For p ∈ Q, we define the

next-transitions of p as the set ∆(p) of all transitions in ∆ that start on p, i.e., ∆(p) =

{(p, x, y) | (p, x, y) ∈ ∆}. We say that a PDA A is deterministic if for every state q ∈ Q,

one of the following conditions hold:

(a) ∆(q) ⊆ Q× Σ×Q and |{q′ | (q, a, q′) ∈ ∆}| ≤ 1 for each a ∈ Σ. Informally,

all applicable transitions are read transitions, and there is at most one such

applicable transition for each letter.

117

(b) ∆(q) ⊆ Q× (Q×Γ), and |∆(q)| ≤ 1. Informally, all applicable transitions are

push transitions, and there is at most one such transition from q.

(c) ∆(q) ⊆ (Q× Γ)×Q and |{q′ | (q, γ, q′)}| ≤ 1 for each γ ∈ Γ. Informally, all

applicable transitions from q are pop transitions, and there is at most one such

applicable transition for each stack symbol.

It is clear that the definition ensures that, on every input string w, a deterministic PDA

A has at most one run accepting w, so that we can check in linear time in A and w if

w ∈ L(A). Further, it is known that deterministic PDAs are strictly less expressive than

general PDAs.

In order to prove the statement of Proposition 4.7, let us first give the formal definitions

needed for the result. We say that two annotated grammars G and G ′ are equivalent if they

define the same functions, i.e., JGK = JG ′K. We define equivalence in the same way for

two PDAnns, or for an annotated grammar and a PDAnn.

We first show one direction:

CLAIM 4.3. For any annotated grammar G, we can build an equivalent PDAnn P in

polynomial time. Further, if G is unambiguous then so is P . Moreover, if G is rigid, then

P is profiled.

PROOF. This is a standard transformation. Let G = (V,Σ,Ω, P, S). We build a PDAnn

P = (Q,Σ,Ω,Γ,∆, q0, F) as follows: For every rule X → α of G and position 0 ≤ i ≤

|α|, the PDAnn P has a state (X,α, i) in Q, plus a special state q0 which is the only initial

and only final state. Also, Γ = Q. The set ∆ has the following transitions:

• A push transition (q0, (S, α, 0), q0) and a pop transition ((S, α, |α|), q0, q0), for

every rule S → α.

• For each state (X,α, |α|) for a production X → α, a pop transition reading a

state from the stack and moving to that state.

118

• For each state (X,α, i) where the (i + 1)-th element of α (numbered from 1) is

a nonterminal Y , for every rule Y → β, a pop transition pushing (X,α, i + 1),

and moving to (Y, β, 0).

• For each state (X,α, i) where the (i + 1)-th element of α (numbered from 1) is

a terminal τ , a read transition moving to (X,α, i + 1) reading the symbol of τ

and outputting the annotation of τ (if any).

We will show a function that maps a given leftmost derivation S ⇒G γ1 ⇒G . . . ⇒G
γm = ŵ into a run in P . To do this, we convert is sequence of productions into a sequence

of strings which has the same size as the run (minus one). These strings serve as an

intermediate representation of both the derivation and the run. The process is essentially

to simulate the run in P .

• First, we reduce the derivation into a sequence of productions X1 ⇒ γ1, X2 ⇒

γ2, . . . , Xm ⇒ γm which uniquely defines the derivation.

• The alphabet in which we represent strings that produce other strings include

two special markers ↓ and ↑.

• We start on the string ↓ S ↑.

• If the current string is û ↓ Xβ, and it is the i-th one that has reached a string of

this form, then it must hold that X = Xi. We follow it by û ↓ γi ↑ β.

• If the current string is û ↓ τβ, for some terminal τ , we follow it by ûτ ↓ β.

• If the current string is û ↓↑ β, then we follow it by û ↓ β.

• If the current string is û ↓, there is no follow up.

Interestingly, this function is completely reversible, since to obtain a sequence of produc-

tions from a sequence of strings in this model, all we need to do is to remove the markers

↓ and ↑ and eliminate the duplicate strings that appear. We will borrow the name splain to

talk about the function which receives a string and returns one which deletes all markers.

It is obvious that the resulting derivation is the original one.

119

Furthermore, and more interestingly, we can extend the function shape to receive one

of these strings and return a string in the alphabet {0, 1, ↓, ↑}. For two derivations that

have the same shape, the resulting sequences have the same shape as well.

This sequence of strings represents a run in P almost verbatim, and we only need

to adapt it into a sequence of pushes, pops and reads: We make a run ρ which starts on

q0, pushes (X, γ1, 0) to the stack, and moves to the state (X, γ1, 0). This pairs exactly to

the strings ↓ S and ↓ γ1 ↑, which are the first two in the sequence. Then, we read the

sequence of strings in order. If the current string is û ↓ Xβ, and this is the i-th time a

string of this form is seen, then the current state must be (Y, α1Xiα2, k), where |α1| = k;

we push (Y, α1Xiα2, k+ 1) onto the stack, and move to the state (Xi, γi, 0). If the current

string is û ↓ aβ for some a ∈ Σ, and the current state is (X, γ, k), we read τ , and move

to the state (X, γ, k). If the current string is û ↓ (a, o^)β for some a ∈ Σ, and the current

state is (X, γ, k), we read a, output o^, and move to the state (X, γ, k). If the current string

is û ↓↑ β, we pop the topmost state from the stack and we move into that state. It is

straightforward to see that this run represents exactly the leftmost derivation S ⇒∗G ŵ,

and that for each annotated string ŵ ∈ L(G) if and only if there is a run of P over w that

produces µ = ann(ŵ) as output.

This function is also reversible. Consider a run of P over a string w which produces µ

as output. This run must start on q0, and then push q0 and move onto a state (S, α, 0) for

some rule S → α. Thus, our first two strings in the sequence are ↓ S ↑ and ↓ α ↑↑. If the

current state is (X,α, k) and the next transition is to push (X,α, k + 1) onto the stack to

move into the state (Y, γ, 0), then the current string is of the form û ↓ Xβ, so we follow it

by the string û ↓ γ ↑ β. If the next transition is a pop, then the current string is û ↓↑ β, so

we follow it by û ↓ β. If the current transition is a read, then the current string is û ↓ aβ

for a ∈ Σ, so we follow it by ûτ ↓ β. If the current transition is a read-write, then the

current string is û ↓ (a, o^)β for (a, o^) ∈ Σ × Ω, so we follow it by û(a, o^) ↓ β. It can

easily be seen that using the original function over this resulting sequence would give the

original sequence back. We point that these two reversible functions mean that there is a

120

one to one correspondence between derivations of S ⇒∗G ŵ and accepting runs of P over

w with output µ = ann(ŵ).

Similarly to the observation we made before, we notice that if we start on a sequence

in the intermediate model, the profile of the resulting run ρ is fully given by the shape of

the sequence (at each step, the size of the stack will be equal to the number of markers ↑

present in the string).

Now assume that G is unambiguous. Seeing that P is unambiguous as well comes

straightforwardly from the fact that the functions presented above are bijective.

Assume now that G is rigid. Let w be an unannotated string and consider two runs

ρ1 and ρ2 of P over w which output µ1 and µ2 respectively. Convert these two runs

into sequences S1 and S2 in the intermediate model. Note that if we convert these two

sequences into derivations S ⇒∗G µi(w), they will have the same shape. We can apply the

functions above to obtain the two runs ρ1 and ρ2 back, and note that they have the same

profile. We conclude that if G is rigid, then P is profiled. �

We then show another direction:

CLAIM 4.4. For any PDAnn P , we can build an equivalent annotated grammar G in

polynomial time. Further, if P is unambiguous then so is G. Moreover, if P is profiled,

then G is rigid.

PROOF. This is again a standard transformation. We first transform the input PDAnn

P = (Q,Σ,Ω,Γ,∆, q0, F) to accept by empty stack, i.e., to accept iff the stack is empty.

To do this, we build an equivalent PDAnn P ′ = (Q′,Σ,Ω,Γ′,∆′, q′0, F
′) where Q′ =

Q ∪ {q′0, qe, qf}, Γ′ = Γ ∪ {γ0}, F = {qf}, and we add the following transitions to ∆ to

obtain ∆′: A push transition (q′0, q0, γ0), a pop transition (q, γ0, qf) for every q ∈ F (for

runs that accept at a point where the stack is already empty), plus a pop transition (q, γ, qe)

for any other γ ∈ Γ, and a pop transition (qe, q0, qf).

121

This clearly ensures that there is a bijection between the accepting runs of P and those

of P ′: given an accepting run ρ of P , the bijection maps it to an accepting run of P ′

by extending it with a push transition at the beginning, and pop transitions at the end.

Further, all accepting runs in P ′ now finish with an empty stack, more specifically a run is

accepting iff it finishes with an empty stack.

Now, we can perform the transformation. The nonterminals of the grammar are triples

of the form (q, γ, q′) for states q and q′ and a stack symbol γ. Intuitively, (p, γ, q′) will

derive the strings that can be read by the PDAnn starting from state p, reaching some other

state q with the same stack, not seeing the stack at all in the process, and then popping γ

to reach q′.

The production rules are the following:

• A rule S → (q0, γ0, qf).

• A rule (p, γ, q′) → (q, γ′, r)(r, γ, q′) for every nonterminal (p, γ, q′), push tran-

sition (p, q, γ′) ∈ ∆ and state r.

• A rule (p, γ, q)→ ε for each pop transition (p, γ, q) ∈ ∆.

• A rule (p, γ, q′)→ (a, o^)(q, γ, q′) for each read-write transition (p, (a, o^), q), and

a rule (p, γ, q′) → a(q, γ, q′) for each read transition (p, a, q), for each nonter-

minal (p, γ, q′).

As we did in Proposition 4.3, we will show a function which receives an accepting

run ρ over w in P with output µ and outputs a leftmost derivation S = α1 ⇒G α2 ⇒G
. . . ⇒G αm = µ(w). The way we do this is quite straightforward: There is a one-to-

one correspondence between snapshots in the run to each αi. Indeed, it can be seen that

αi = û(q1, γ1, q2)(q2, γ2, q3) . . . (qk, γk, qf) for some string û ∈ (Σ ∪ (Σ × Ω))∗, some

states q1, . . . , qk and stack symbols γ1, . . . , γk. Moreover, the i-th stack in the run is equal

to γ1γ2 . . . γk, whereas each state qj is the first state that is reached after popping the re-

spective γj−1. We see that this function is fully reversible, as each production corresponds

122

unequivocally to a transition in particular. This implies that P is unambiguous if, and only

if G is unambiguous.

For the next part of the proof, we bring attention to the fact that there are exactly four

possible shapes on the right sides of the rules in G. Each of these directly map to some type

of transition, be it the initial push transition (q′0, q0, γ0), a different push transition, a pop

transition, or a read (or read-write) transition. To be precise, these shapes are the strings

1, 11, ε and 01 respectively. From here it can be easily seen that, while comparing a run

ρ to is respective derivation S ⇒∗G ŵ, each production in the run immediately tells which

type of transition was taken, and each transition in the run immediately tells which rule

(and therefore, rule shape) was used. Therefore, each derivation shape maps to exactly

one stack profile and vice versa, from which we conclude that P is profiled if, and only if,

G is rigid. �

The proof now follows from Claims 4.3 and 4.4, �

Let us now study the enumeration for PDAnns. We know that the problem for unam-

biguous PDAnns can be solved via Proposition 4.7 with cubic-time preprocessing in data

complexity and output-linear delay (with Theorem 4.2). We know that profiled PDAnns

can be made unambiguous (via Proposition 4.7 and Theorem 4.3) and so that we can solve

enumeration for them in quadratic-time preprocessing in data complexity and output-linear

delay (using Theorem 4.4). We now show that, if we are given a profile of an unambigu-

ous PDAnn P on an input string w, we can use it as a guide to enumerate with linear

preprocessing and output-linear delay the set JPKπ(w) of annotations for that profile, i.e.,

all ann(ρ) such that ρ is an accepting run with profile π of P over w. Formally:

Lemma 4.2. Given an unambiguous PDAnn P , there exists an enumeration algorithm

that receives as input a string w and a profile π of P over w, and enumerates JPKπ(w)

with output-linear delay after linear-time preprocessing in data complexity.

123

PROOF. We will show a linear-time reduction to enumeration for an unambiguous

VPAnn (see Chapter 3).

The theorem we use can be stated as follows:

Theorem 4.5. (Theorem 3.1) There is an algorithm that receives an unambiguous

VPAnn T = (Q, Σ̂,Γ,Ω,∆, q0, F) and an input string w, and enumerates the set JTK(w)

with output-linear delay after a preprocessing phase that takes O(|Q|2 · |∆| · |w|) time.

The rest of the proof will consist on showing a linear-time reduction from the problem

of enumerating the set JPKπ(w) for an unambiguous PDAnn P and input string w to the

problem of enumerating the set JTK(w′) for an unambiguous VPAnn T , and input string

w′.

Let P = (Q,Σ,Ω,Γ,∆, q0, F) and let w ∈ Σ∗ be an input string. Consider the

structured alphabet Σ̂ = ({<}, {>},Σ) for some <,> 6∈ Σ. Assume π = π1, . . . , πm.

We construct a well-nested string w′ = b1 · · · bm−1 where bi = < if πi > πi+1, bi = <

if πi < πi+1, and bi = wj otherwise, where i is the j-th index in which πi = πi+1. We

also build a table Ind such that Ind(i) = j for each of the indices in the third case. We

build a VPAnn T = (Q, Σ̂,Γ,Ω,∆′, I, F) where I = {q0} and we get ∆′ by replacing

every push transition (p, q, γ) ∈ ∆ by (p,<, q, γ) and every pop transition (p, γ, q) ∈ ∆

by (p,>, q, γ). Note that read and read-write transitions are untouched.

Let w be an input string, and let µ be an output. Consider the output µ′ which is

obtained by shifting the indices in µ to those that correspond in w′. We argue that for each

run ρ of P over w with profile π which produces µ, there is exactly one run ρ′ of T over w′

which produces µ′, and vice versa. We see this by a straightforward induction argument

on the size of the run. This immediately implies that for each output µ ∈ JTK(w) there

exists exactly one output µ′ ∈ JPKπ(w), which has its indices shifted as we mentioned.

The algorithm then consists on simulating the procedure from Theorem 4.5 over T and

w′, and before producing an output µ, we replace the indices to the correct ones following

the table Ind. The time bounds are unchanged since the table Ind has linear size in m, and

124

replacing the index on some output µ can be done linearly on |µ|. We conclude that there is

algorithm that enumerates the set JPKπ(w) with output-linear delay after a preprocessing

that takes O(|Q|2 · |∆| · |π|) time. �

This result implies that we could achieve linear-time enumeration over profiled PDAnn

if we could easily discover their (unique) profile. We achieve this in deterministically

profiled PDAnns.

Deterministically profiled PDAnn. Let P = (Q,Σ,Ω,Γ,∆, q0, F) be a PDAnn. We say

that a PDAnn P is deterministically profiled if, for any string w ∈ Σ∗, for any two partial

runs ρ and ρ′ of P over w with the same length, ρ and ρ′ have the same profile.

The relationship between deterministically profiled PDAnns and deterministic push-

down automata is similar to the relationship between profiled PDAnns and unambiguous

pushdown automata (the latter relationship was stated as Proposition 4.4 in the context of

grammars).

Specifically:

PROPOSITION 4.8. For a deterministically profiled PDAnn P , let L′ be the set of

strings with nonempty output, i.e., L′ = {w | JPK(w) 6= ∅}. Then L′ is recognized by a

deterministic pushdown automaton.

PROOF. For this result, we use the notion of PDA (Definition 4.2) and deterministic

PDA (Definition 4.3) that were presented inside a previous proof.

As we have done in previous proofs, the strategy consists on starting with a profiled-

deterministic PDAnn P , and building a PDAnn P ′ by eliminating the output symbols from

each transition. This PDAnn behaves almost identically to a pushdown automaton A in

the sense that if w ∈ L(A), then JPK(w) = {ε}, and that if w 6∈ L(A) then JPK(w) = ∅.

Whenever this holds, we say that the PDAnn and the pushdown automaton are equivalent.

It is simple to see that for this A it holds that L(A) = L′. To conclude the proof, we must

125

show that A can be made deterministic. Without loss of generality, we remove from A all

inaccessible states, i.e., all states for which there is no run that goes to the state.

First, we will prove that the PDAnn P ′ is profiled-deterministic. Let w be a string

in Σ∗ and let ρ′1 and ρ′2 be two partial runs of P ′ over w with the same profile, and with

last configurations (q, i) and (q′, i). There clearly exist partial runs ρ1 and ρ2 of P over

w with the same profile, which can be obtained by replacing each transition by one of

the transitions in P it was replaced by. Since P is profile-deterministic, then one of the

following must hold in P: (1) ∆(q) ∪∆(q′) ⊆ Q× (Σ ∪ Σ× Ω)×Q, i.e., all transitions

from q and q′ are read or read-write transitions; (2) ∆(q) ∪ ∆(q′) ⊆ Q × (Q × Γ), i.e.,

all transitions from q and q′ are push transitions; or (3) ∆(q) ∪ ∆(q′) ⊆ (Q × Γ) × Q,

i.e., all transitions from q and q′ are pop transitions. Note that if (2) or (3) hold, then in

the new PDAnn P the condition holds again in P ′ trivially since none of the transitions

in ∆(q) and ∆(q′) was changed. Moreover, if (1) holds, then it can be seen that all of the

transitions that belonged in Q× (Σ×Ω)×Q now belong in Q×Σ×Q, which also leaves

the condition unchanged in P ′. We conclude that P ′ is profiled-deterministic.

The next step is to use Lemma 4.1 from P ′ to obtain an equivalent PDAnn P ′′ which is

deterministic-modulo-profile. We will argue that if we start with P ′, which was profiled-

deterministic, then the resulting P ′′ is equivalent to a pushdown automaton A′ which is

also deterministic. Let w be an input string in Σ∗ and let ρ′′ be a partial run of A over w

with last configuration (S, i) and with topmost symbol on the stack T . Let us recall what

P ′′ being deterministic-modulo-profile entails that the following conditions hold:

(i) There is at most one push transition that starts on S; formally, we have:

|{S ′, T ∈ Q′′ × Γ′′ | (S, S ′, T) ∈ ∆}| ≤ 1.

(ii) There is at most one pop transition that starts on S, T ; formally, for each γ, we

have:

|{S ′ ∈ Q | (S, γ, S ′) ∈ ∆}| ≤ 1.

126

(iii) For each letter a, and output o^ ∈ Ω, there is at most one read-write transition

that starts on S, a, o^; formally, we have

|{S ′ ∈ Q′′ | (S, (a, o^), S ′) ∈ ∆′′}| ≤ 1.

(iv) For each letter a, there is at most one read transition that starts on S, a; formally,

we have:

|{q ∈ Q′′ | (S, a, S ′) ∈ ∆′′}| ≤ 1.

We will show that at most one of these conditions holds. Recall that in the transformation,

the states of P ′′ are sets which contain pairs of states (p, q) ∈ Q′ × Q′, and the stack

symbols are triples (p, γ, q) ∈ Q′ × Γ′ ×Q′. Now, recall the claim that was proven in the

lemma, on the backwards direction:

If P ′′ has a run ρ′′ on a stringw, producing output µ, from its initial state to an instanta-

neous description (S, i), α′ with α′ = T0, . . . , Tm being the sequence of the stack symbols,

then for any choice of elements (q0, γ0, p0) ∈ T0, (p0, γ1, p1) ∈ T1, ..., (pm−1, γm, pm) ∈

Tm and (pm, q) ∈ S it holds that P ′ has a run ρ′ on w producing output µ from some initial

state q0 to the instantaneous description (q, i), α with α = γ0q0, . . . , γmqm (writing next to

each stack symbol the state that annotates it), and ρ′′ and ρ′ have the same profile.

Since P ′ is profiled-deterministic, then each run ρ′+ which continues ρ′ by one step

must have the same shape. This implies that exactly one of the following conditions must

hold:

• The last transition in ρ′+ is a read or read-write transition. Therefore, all transi-

tions from q are either read or read-write transitions.

• The last transition in ρ′+ is a push transition. Therefore, all transitions from q

are pop transitions.

• The last transition in ρ′+ is a pop transition. Therefore, all transitions from q are

pop transitions.

127

Assume bullet point 1 holds. Note that there are no read-write transitions in P ′ so there

are only read transitions. From here, we prove that only (4) is true simply by inspecting

the transformation in the lemma; if (1) held, then there would be a push transition from q

in P ′, if (2) held then there would be a pop transition from q and γ in P ′, and (3) never

holds. Now, assume bullet point 2 holds. From here, we prove that only (1) can be true;

if (2) held, then there would be a pop transition from q and γ in P ′, if (4) held, then there

would be a read transition from q in P ′, and again, (3) is never true. Lastly, assume bullet

point 3 holds. From here, we prove that only (2) can be true; if (1) held, then there would

be a push transition from q in P ′, if (4) held, then there would be a read transition from q

in P ′, and yet again, (3) is never true. We conclude that from the 4 points, at most one of

these can be true at the same time.

Now we prove that the equivalent PDA A is deterministic. Let q be a state of A. As

all states of A are accessible, pick ρ′′ to be a run that reaches state q. We have argued that

at most one of the points in the list above is true of P ′, and it cannot be point (3). Now,

we see that (a) is equivalent to (4), that (b) is equivalent to (1) and (c) is equivalent to (2).

Since only one of the conditions among (1), (2) or (4) can be true, the same holds for (a),

(b) and (c), from which we conclude that A is deterministic. This completes the proof.

�

This result gives a concrete picture of the expressive power of deterministically pro-

filed PDAnn A, i.e., as acceptors they are more powerful than the class of visibly push-

down automata (Alur & Madhusudan, 2004a), where each alphabet letter must have a

specific effect on the profile. Deterministically profiled PDAnn are also reminiscent of the

height-determinism notion introduced for pushdown automata (Nowotka & Srba, 2007),

but extend this with the support of annotations.

Deterministically profiled PDAnn are designed to ensure that they have only one pro-

file (i.e., they are profiled), and further that their unique profile can be constructed in linear

time:

128

PROPOSITION 4.9. A deterministically profiled PDAnnP is always profiled, and given

a string w, the unique profile of accepting runs of P over w can be computed in linear

time in w.

PROOF. Consider a deterministically profiled PDAnn P . To prove that it is profiled,

consider an input string w ∈ Σ∗. We will prove by a simple induction argument that any

two runs of P over w have the same profile. The base case is trivial since the run is of

length 0, and the profile up to now is composed simply of the stack size 0. Assume now

that for each pair of runs ρ and ρ′ of P over w of size k, that they have the same profile.

We will show that for every pair of runs ρ1 and ρ2 over w of size k+ 1, they have the same

profile as well. Note that the runs ρ−1 and ρ−2 that are obtained by removing the last step

have the same profile, by the hypothesis. From the definition of deterministically profiled

it can be directly seen that if (1) the last transition in ρ1 is a read or read-write transition,

then for the runs ρ−1 and ρ−2 , the only choices are read or read-write transitions, from which

we deduce that the last transition in ρ2 is a read or read-write transition as well, if (2) the

last transition in ρ1 is a push transition, then for the run ρ−1 and ρ−2 the only choice are

push transitions, and therefore the last transition in ρ2 has to be a push transition as well,

and if (3) the last transition in ρ1 is a pop transition, then for ρ−1 and ρ−2 the only choices

are pop transitions, so the last transition in ρ2 must be a pop transition as well. We obtain

that ρ1 and ρ2 have the same profile, and from the induction argument, we conclude that

P is profiled.

Now, consider a deterministically profiled PDAnn P and an input string w. We will

prove that the unique profile of accepting runs of P over w can be computed in linear time

in |w|. The way we do this is by using the pushdown automatonA that was constructed in

Proposition 4.8. By inspecting the proof, it can be seen that the unique profile of P over w

is maintained throughout the construction. Indeed, the first construction simply removes

the output symbols, which does not affect the profile, and the second construction has an

invariant that keeps the profile intact as well. Therefore, by running the automatonA over

w, and storing the stack sizes at each step, we obtain a profile π which is exactly the same

129

profile of the accepting runs of P over w. To finish the proof, we only need to argue

that this profile has linear size on |w| (from a data complexity perspective). This follows

from the fact that any run of a deterministic pushdown automaton A over a string w has

O(f(A)×|w|) length, for some computable function f . This can be seen from a counting

argument: (1) There is a maximum stack size k that can be reached in an accepting run of

P overw from an empty stack through ε-transitions, which is given by the number of states

in A. Otherwise, there are two configurations which are reachable from one another in a

way such the stack, as it was at the first configuration, is not seen. This implies that there

is a loop, and since A is deterministic, A does not accept w. (2) From a given stack, the

maximum numbers of steps that can be taken without reading from w, and without seeing

the topmost symbol on the stack is given by the number of possible stacks of size k. (3)

Between a read (or read-write) transition and the next one, the maximum height difference

is k, and if we move out of a read (or read-write) transition with a certain stack, from (2)

we can see that we can only do a fixed number of steps before consuming some symbol

from this stack, and therefore, the number of steps is bounded by a factor depending on

A multiplied by the size of the stack up until this point, which is linear on the number of

symbols in w read so far. We conclude that w′ has size linear on w, from a data complexity

point of view. �

Together with Lemma 4.2, this yields:

Corollary 4.1. Let P be a deterministically profiled PDAnn. Then for every string w

the set JPK(w) can be enumerated with output-linear delay after linear-time preprocessing

in data complexity.

4.5. Application: Document Spanners

We have presented our enumeration results for annotated grammars and pushdown

annotators. We conclude the chapter by applying them to the standard context of doc-

ument spanners (Fagin et al., 2015) and to the extraction grammars recently introduced

130

in (Peterfreund, 2023). We omit a formal introduction of extraction grammars as they

were defined in Section 3.7.

It can be noted that extraction grammars are like annotated grammars but with variable

operations that describe span endpoints (whereas our annotations are arbitrary), and that

are expressed as separate variable operation characters (not annotations of existing letters).

We can now formally define the equivalence between an extraction grammar and an

annotated grammar. To do so, we first explain how we can translate mappings to annota-

tions:

Definition 4.4 (Output associated to a mapping). Given a setX of variables, the corre-

sponding set of annotations ΩX will be the powerset of CX . Now, given a mapping η on a

document d and variables X to an annotation, we let I =
⋃
x∈X{i, j | η(x) = [i, j〉}

be the set of indices which appear in some span of η. Further, for each k ∈ I, let

Sk = {`x| ∃j. η(x) = [k, j〉} ∪ {ax | ∃i. η(x) = [i, k〉}. We now define the output

out(η) = (i1, Si1) . . . (im, Sim) where I = {i1, . . . , im} and i1 < · · · < im, namely, we

group the captures for each position as a set and use this set as the annotation. Note that

the largest index that appears in the annotation can be |d| + 1 because of the range of

spans.

Comparing both formalisms. Given an extraction grammar H on alphabet Σ and with

variables X , we say that it has an equivalent annotated grammar G if G is over the set

of annotations ΩX and over the alphabet Σ ∪ {#} for # a fresh symbol, and if for every

document d ∈ Σ∗ and every mapping η of d over X , we have η ∈ JHK(d) iff out(η) ∈

JGK(d ·#). The #-symbol at the end is used because of the difference in the indexing of

spans (from 1 to |d|+ 1) and annotations (from 1 to d).

We show that every extraction grammar has an equivalent annotation grammar in this

sense, and the translation further preserves unambiguity:

131

PROPOSITION 4.10. Given any extraction grammarH with k variables, we can build

an equivalent annotated grammar G in timeO(93k · |H|2). Moreover, ifH is unambiguous

then so is G.

PROOF. Recall that, in the statement of this result, the formal notion of an equivalent

annotated grammar is the one defined above. Recall also the formal definition of ref-words

(see Section 2.2).

Let r be a ref-word in Σ ∪ CX and let ŵ be an annotated string in Σ ∪ (Σ × ΩX).

We say that r and ŵ are equivalent if plain(r ·#) = str(ŵ) and out(ηr) = ann(ŵ). For

example, the ref-word r1 = `xaaax`y bbay b is equivalent to ŵ1 = (a, {`x})a (b, {ax
,`y})bb (b, {ay}) #.

The overall strategy of this proof is going to be to construct an annotated grammar G

in a way such that for every ref-word r ∈ L(H) there exists an equivalent annotated string

ŵ ∈ L(G), and vice versa. It is clear that this implies that G andH are equivalent.

The way we build G will look like we are “pushing” the variable operations to the next

terminal to the right. We will do this process one variable operation at a time.

First, we need to define an intermediate model between those of extraction grammars

and annotated grammars. We define extraction grammars with annotations as a straight-

forward extension of extraction grammars which allow annotations on terminals that are

not variable operations. For the set of variables X , recall from Section 2.2 that we de-

fine the variable operations of X by CX = {`x,ax | x ∈ X}, and recall from Defini-

tion 4.4 that we define ΩX = 2CX . An extraction grammar with annotations is a tuple

F = (V,Σ,X , P, S) where V is a finite set of nonterminal symbols, Σ is an alphabet and

X is a set of variables, such that V , Σ, Σ×ΩX , and CX are pairwise disjoint, P is a finite

set of rules of the form A → α with A ∈ V and α ∈ (V ∪ Σ ∪ (Σ × ΩX) ∪ CX)∗, and

S ∈ V is the start symbol. As in the other models, the semantic of extraction grammars

is defined through derivations. Specifically, the set P defines the (left) derivation relation

132

⇒F ⊆ (V ∪Σ∪(Σ×ΩX)∪CX)∗×(V ∪Σ∪(Σ×ΩX)∪CX)∗ such that ûAβ ⇒F ûαβ iff

û ∈ (Σ∪ (Σ×ΩX)∪CX)∗, A ∈ V , α, β ∈ (V ∪Σ∪ (Σ×ΩX)∪CX)∗, and A→ α ∈ P .

We denote by⇒∗F the reflexive and transitive closure of⇒F . Then the language defined

by F is L(F) = {ŵ ∈ (Σ ∪ (Σ × ΩX) ∪ CX)∗ | S ⇒∗F ŵ}. In addition, we assume that

no string ŵ in L(F) has a variable operation as its last symbol.

An extraction grammar with annotations generates strings over Σ ∪ (Σ × ΩX) ∪ CX ,

which we now refer to as annotated ref-words, and each annotated ref-word defines an

output. We will define the semantics of extraction grammars with annotations recursively

by using the semantics of annotated grammars as a starting point, that is, by extending the

function ann to receive strings over Σ ∪ (Σ × ΩX) ∪ CX . In particular, for an annotated

ref-word r̂ ∈ (Σ∪(Σ×ΩX))∗ the result of ann(r̂) stays the same. For a string r̂ = ûκav̂ ∈

(Σ ∪ (Σ× ΩX) ∪CX)∗ where κ ∈ CX and a ∈ Σ, we define ann(r̂) = ann(û(a, {κ})v̂),

and for a string r̂ = ûκ(a, o^)v̂ ∈ (Σ ∪ (Σ × ΩX) ∪ CX)∗ where o^ ∈ ΩX , we define

ann(r̂) = ann(û(a, o^∪{κ})v̂).

Further, we extend the function str to receive strings over Σ ∪ (Σ × ΩX) ∪ CX as

str(r̂) = str(plain(r̂)). Therefore, for an extraction grammar with annotations F and a

string w ∈ Σ∗ we define the function JFK as: JFK(w) := {ann(r̂) | r̂ ∈ L(F)∧ str(r̂) =

w}. We maintain the notions of equivalency between annotated grammars, extraction

grammars, and extraction grammars with annotations. Likewise, we define equality be-

tween annotated strings, ref-words and annotated ref-words in the obvious way. Further,

we note that any extraction grammar H = (V,Σ,X , P, S) is equivalent to the extraction

grammar with annotations F = (V ′,Σ ∪ {#},X , P ′, S ′) where V ′ = V ∪ {S ′} for some

S ′ 6∈ V , and P ′ = P ∪ {S ′ → S#}. It is obvious that F is unambiguous if and only if H

is unambiguous.

We proceed as follows. First we convert H into a functional extraction grammar. As

detailed in Peterfreund’s work (Peterfreund, 2023, Propositions 10 and 12), this takes run-

ning time O(32k|H|2), and if the initial grammar is unambiguous then so is the resulting

grammar. Note that this implies that every ref-word r which is derivable from S contains

133

each variable operation at most once. Hence we can build an equivalent extraction gram-

mar with annotations F = (V,Σ,X , P, S) using the technique above. We then convert F

into a version of CNF which is slightly more restrictive than arity-two normal form: We

allow rules of the form X → Y Z, X → ε and X → τ , for nonterminals X, Y and Z and

a terminal τ , but rules of the form X → Y are not permitted. Converting to this formalism

can be done in linear time in |F|while preserving unambiguity, e.g., by transforming rules

of the form X → Y to X → EY for some fresh nonterminal E with a rule E → ε, and

otherwise applying our result on arity-2 normal form (Proposition 4.1). We pick an order

over the variable operations in CX and for each κ ∈ CX we do the following:

Define a function procκ that receives an annotated ref-word r̂ ∈ (Σ∪(Σ×2CX)∪CX)∗

and:

(i) if r̂ ∈ (Σ ∪ (Σ× 2CX) ∪ (CX \ {κ}))∗, then procκ(r̂) = r̂,

(ii) if r̂ = ûκβav̂ for some û, v̂ ∈ (Σ∪ (Σ× 2CX)∪ (CX \ {κ}))∗, β ∈ (CX \ {κ})∗

and a ∈ Σ, then procκ(r̂) = ûκβ(a, {κ})v̂,

(iii) if r̂ = ûκβ(a, T)v̂, with T ⊆ CX \{κ}, then procκ(r̂) = ûκβ(a, T ∪{κ})v̂, and

(iv) procκ is undefined in any other case.

It is straightforward to see that the annotated ref-words r̂ and t̂ = procκ(r̂) are equivalent

whenever procκ(r̂) is defined.

We build an extraction grammar with annotations F ′ = (V ′,Σ,X , P ′, S ′) where

V ′ = Vout ∪ Vin ∪ Vleft ∪ Vmid ∪ Vright ∪ {S ′}, and Vscr = {Ascr | A ∈ P} for scr ∈

{out, in, left,mid, right}, and P ′ is defined by the following rules:

• For each rule S → AB in P , we add the rules S ′ → AoutBout, S ′ → AinBout

and S ′ → AleftBright to P ′.

• For each rule A → BC, we add the rules Aout → BoutCout, Ain → BinCout,

Ain → BoutC in, Ain → BleftCright, Aleft → BoutC left, Aleft → BleftCmid, Amid →

BmidCmid, Aright → BrightCout and Aright → BmidCright to P ′.

134

• For each rule A→ a, a ∈ Σ, we add Aout → a and Aright → (a, {κ}).

• For each rule A→ (a, T), a ∈ Σ and T ⊆ CX \ {κ}, we add Aout → (a, T) and

Aright → (a, T ∪ {κ}).

• For each ruleA→ κ′, κ′ ∈ CX \{κ}, we add the rulesAout → κ′ andAmid → κ′.

• For each rule A→ κ, we add the rule Aleft → ε.

• For each rule A→ ε, we add the rules Aout → ε and Amid → ε.

Let Σ̂κ = Σ ∪ (Σ× 2CX) ∪ CX \ {κ}. For each nonterminal A ∈ V these hold:

L(Aout) = {ŵ | A⇒∗F ŵ, where ŵ ∈ Σ̂∗κ}

L(Ain) = {procκ(ŵ) | A⇒∗F ŵ, where ŵ = ûκβav̂ or ŵ = ûκβ(a, T)v̂,

û, v̂ ∈ Σ̂∗κ, β ∈ (CX \ {κ})∗, a ∈ Σ, T ⊆ CX \ {κ}}

L(Aleft) = {ŵβ | A⇒∗F ŵκβ, where ŵ ∈ Σ̂∗κ, β ∈ (CX \ {κ})∗}

L(Aright) = {β(a, {κ})ŵ | A⇒∗F βaŵ, where ŵ ∈ Σ̂∗κ, β ∈ (CX \ {κ})∗} ∪

{β(a, T ∪ {κ})ŵ | A⇒∗F β(a, T)ŵ,where ŵ ∈ Σ̂∗κ, β ∈ (CX \ {κ})∗, T ⊆ CX \ {κ}}

L(Amid) = {β | A⇒∗F β, where β ∈ (CX \ {κ})∗}

These equalities are given without proof since they are not used, and are just for illus-

trating the idea behind the proof.

For the rest of our proof we will represent derivations X ⇒∗ δ as the sequence of

productions X1 ⇒ γ1, X2 ⇒ γ2, . . . , Xm ⇒ γm, where X1 = X and γm = δ, which

uniquely determines the derivation by doing it in the leftmost way. We use this represen-

tation to state exactly how derivations in F are translated to derivations in F ′ and vice

versa.

Another notion we need to address is how, in a given derivation X ⇒∗ δ, instances

of nonterminals are located with respect to each other. By an instance of a nonterminal

(or just instance), we mean an Xi along with some specific derivation Xi ⇒ γi in the

sequence. For some instancesXi andXj , we say thatXi is a descendant ofXj ifXi = Xj ,

135

or if Y ⇒ XiZ, or Y ⇒ ZXi for some Y which is a descendant of Xj . We say that Xi

is to the left of Xj (or Xj is to the right of Xi) if there is a derivation X ⇒ Y Z in the

sequence such that Xi is a descendant of Y and Xj is a descendant of Z.

We note a few things in our construction: (1) Each X ∈ Vout only produces terminals

(which do not include κ) and nonterminals in Vout; furthermore, every rule X → Y Z

in P is copied into P ′ as Xout → Y outZout. (2) Nonterminals in Vin do not produce

any terminals or ε directly, so they need to derive into some X ∈ Vin and some Y ∈

Vright to derive some string. (3) As with Vout, each X ∈ Vmid only produces terminals in

CX \ {κ} and nonterminals in Vmid. (4) Each X ∈ Vleft (resp. Vright) produces exactly

one nonterminal X ′ ∈ Vleft (resp. Vright), or ε (resp. (a, T) for some a ∈ Σ and T ⊆ CX

such that κ ∈ T); this, as a consequence, means that on each derivation from F ′ where

the first production is not S ′ ⇒ XoutY out there is exactly one derivation X ⇒ ε such that

X ∈ Vleft (resp., exactly one derivation X ⇒ (a, T), such that X ∈ Vright).

From point (1) we see that each annotated ref-word r̂ ∈ L(F) such that r̂ ∈ Σ̂∗κ (this is,

which does not mention κ at all) can be derived by S ′ starting by S ′ ⇒ AoutBout, S ′ ⇒ a,

S ′ ⇒ ε or S ′ ⇒ κ′.

On the other hand, each annotated ref-word r̂ ∈ L(F ′) which does not have κ on any

annotation set was necessarily derived through rules of the form Xout → Y outZout which

correspond to the rule X → Y Z in P , so we deduce that r̂ ∈ L(F).

We shall now prove that for any string r̂ = ûκβav̂, or r̂ = ûκβ(a, T)v̂, where û, v̂ ∈

Σ̂∗κ, β ∈ CX \ {κ}, a ∈ Σ and T ⊆ CX \ {κ} such that r̂ ∈ L(F), it holds that proc(r̂) ∈

136

L(F ′). W.l.o.g., let r̂ = ûκβav̂ and consider some leftmost derivation of r̂ from F :

S ⇒∗F û1Aδ

⇒F û1BCδ

⇒∗F û1û2κβ1Cδ

⇒∗F û1û2κβ1β2av̂1δ

⇒∗F û1û2κβ1β2av̂1v̂2 = r̂,

where we have that β = β1β2, û = û1û2 and v̂ = v̂1v̂2. Note that this is an arbitrary

derivation, and we are merely identifying these nonterminalsA,B andC. We also identify

the nonterminals D, which produces κ, and E, which produces a. For the rest of the

current part of the proof, we only refer to the instances of these nonterminals. Using this,

we build a derivation from F ′ step by step:

(i) We have S ′ ⇒∗F ′ û1A
inδ′, where δ′ is obtained by replacing each nontermi-

nal X in δ by Xout. We get this by starting with the derivation S ⇒∗F û1Aδ,

and replacing X ⇒F Y Z by X in ⇒F ′ Y inZout if A is a descendant of Y , by

X in ⇒F ′ Y outZ in if Z is, or by Xout ⇒F ′ Y outZout if none is. We also replace

each X ⇒F τ , for τ ∈ Σ ∪ (Σ × 2CX) ∪ CX \ {κ} ∪ {ε}, by Xout ⇒F ′ τ . If

A = S, we replace A it by S ′.

(ii) We have the rule Ain → BleftCright which was added to P ′.

(iii) We have Bleft ⇒∗F ′ û2β1. We get this by starting from B ⇒∗F û2κβ1, and

we replace X ⇒F Y Z by X left ⇒F ′ Y leftZmid if E is a descendant of D, by

X left ⇒F ′ Y outZ left if Z is, by Xout ⇒F ′ Y outZout if X is to the left of D,

and by Xmid ⇒F ′ Y midZmid if it is to the right. We also replace X ⇒F τ by

Xout ⇒F ′ τ if X is to the left of D, and by Xmid ⇒F ′ τ if it is to the right.

Lastly, we replace D ⇒F κ by Dleft ⇒F ′ ε.

(iv) We have Cright ⇒∗F ′ β2(a, {κ})v̂1. We get this by starting from C ⇒∗F β2av̂1,

and we replace X ⇒F Y Z by X right ⇒F ′ Y midZright if E is descendant of Z,

or by X right ⇒F ′ Y rightZout if Y is, by Xmid ⇒F ′ Y midZmid if X is to the left of

137

E, and by X right ⇒F ′ Y rightZright if it is to the right. We also replace X ⇒F τ

by Xmid ⇒F ′ τ if X is to the left of E, and by Xout ⇒F ′ τ if it is to the right.

Lastly, we replace E ⇒F a by Eright ⇒F ′ (a, {κ}).

(v) We have δ′ ⇒∗F ′ v̂2, which we obtain from δ ⇒∗F v̂2 by replacing each X ⇒F
Y Z by Xout ⇒F ′ Y outZout, and each X ⇒F τ by Xout ⇒F ′ τ .

In the end, we get the following leftmost derivation from F ′:

S ⇒∗F ′ û1A
inδ′ (or û1S

′δ′)

⇒F ′ û1B
leftCrightδ′

⇒∗F ′ û1û2β1C
rightδ′

⇒∗F ′ û1û2β1β2(a, {κ})v̂1δ
′

⇒∗F ′ û1û2β1β2(a, {κ})v̂1v̂2 = procκ(r̂),

which proves that proc(r̂) ∈ L(F ′).

We will prove that for every ŝ = û(a, T)v̂ ∈ L(F ′) where κ ∈ T there is r̂ such that

procκ(r̂) = ŝ in a similar way. We argue that any leftmost derivation that produces ŝ has

the following form:

S ′ ⇒∗F ′ û1A
inδ1 (or û1S

′δ1)

⇒F ′ û1B
leftCrightδ1

⇒∗F ′ û1û2D
leftδ2C

rightδ1

⇒F ′ û1û2δ2C
rightδ1

⇒∗F ′ û1û2β1C
rightδ1

⇒∗F ′ û1û2β1β2(a, T)v̂1δ1

⇒∗F ′ û1û2β1β2(a, T)v̂1v̂2 = ŝ,

where δ ∈ V ∗out, δ′ ∈ V ∗mid, β1, β2 ∈ (CX \ {κ})∗, û = û1û2 and v̂ = v̂1v̂2. The reasoning

goes as follows:

138

• We know that S ′ ⇒∗F ′ ûβ(a, T)v̂ ∈ L(F ′). If X ⇒F ′ (a, T) and κ ∈ T , then

X ∈ Vright.

• From the way F ′ was built, there must be a production X ⇒F ′ Y Z in S ′ ⇒∗F ′ ŝ

such that X ∈ Vin (or X = S ′), Y ∈ Vleft and Z ∈ Vright, as it is the only way to

derive a nonterminal in Vright. Let Ain (or S ′), Bleft and Cright be these X , Y and

Z respectively.

• Seeing the rules in P ′ we note that every string of terminals that is derivable

from Bleft is of the form ŵβ, where ŵ ∈ Σ̂κ and β ∈ (CX \ {κ})∗. Furthermore,

this string satisfies that there is a production X ⇒F ′ ε for some X ∈ Vleft such

that this ε is exactly at the left of where β begins. Let û2 be this ŵ, let Dleft be

this X , and let β1 be this β.

• Likewise, we note that Cright always derives a string of terminals of the form

β(a′, T ′)ŵ for some β ∈ (CX \ {κ})∗ and ŵ ∈ Σ̂κ. Let β2 be this β and let v̂1

be this ŵ.

• Lastly, let S ′ ⇒∗F ′ û1A
inδ1 (or û1S

′δ1) be the one that derives ŝ. From the rules

in P ′, we note that δ1 is composed solely of nonterminals in Vout.

An important point that can be seen from this reasoning is that for each instance X 6=

S ′ that appears in the derivation S ′ ⇒∗F ′ ŝ, we can deduce the set Vscr for which X ∈ Vscr,

among the options scr ∈ {out, in, left,mid, right}, by seeing its position in the derivation.

To be precise, this is given from how X relates to the instances Dleft ⇒ ε, and to Eright ⇒

(a, T), for the nonterminal Eright ∈ Vright that satisfies this. (1) If X is to the left of Dleft,

then X ∈ Vout, (2) if Dleft is a descendant of X , but Eright is not, then X ∈ Vleft, (3) if X is

to the right of Dleft, and is to the left of Eright, then X ∈ Vmid, (4) if Eright is a descendant

of X , but Dleft is not, then X ∈ Xright, (5) if X is to the right of Eright, then X ∈ Vout,

and (6) if both Dleft and Eright are descendants of X , then X ∈ Vin. We bring attention to

the fact that in this paragraph we referred only to the instances of Dleft and Eright on the

derivations mentioned above.

139

Another, more important point, is this reasoning gives us the derivation presented

above. This derivation is translated into the following derivation in F :

S ⇒∗F û1Aδ
′
1 (or û1Sδ

′
1)

⇒F û1BCδ
′
1

⇒∗F û1û2Dδ
′
2Cδ

′
1

⇒F û1û2κδ
′
2Cδ

′
1

⇒∗F û1û2κβ1Cδ
′
1

⇒F û1û2κβ1β2(a, T \ {κ})v̂1δ
′
1, or

û1û2κβ1β2av̂1δ
′
1,

⇒∗F û1û2κβ1β2(a, T \ {κ})v̂1v̂2 = r̂, or

û1û2κβ1β2av̂1v̂2 = r̂,

Where δ′1 and δ′2 are obtained by replacing each Xmid by X in δ1 and δ2, respectively. It is

direct to see that this is a valid derivation since for every production Xx ⇒F ′ Y yZz there

exists a valid production X ⇒F Y Z, for any x, y, z ∈ {in, out, left,mid, right}. Further-

more, for the production Dleft ⇒F ′ ε there exists D ⇒F κ, and for Cright ⇒F ′ (a, T)

there exists C ⇒F (a, T \ {κ}) if T 6= {κ}, and C ⇒F a if T = {κ}. Further, note that

procκ(r̂) = ŝ. We conclude that r̂ ∈ L(F) for some r̂ such that procκ(r̂) = ŝ.

From the arguments above, we obtain that for each annotated ref-word r̂ ∈ L(F)

there exists an equivalent annotated ref-word t̂ ∈ L(F), given by t̂ = procκ(r̂). Further-

more, we showed that for each annotated ref-word t̂ ∈ L(F ′) there exists an equivalent

r̂ ∈ L(F). This implies that F and F ′ are equivalent.

Now, assume that F is unambiguous. We will prove that F ′ is unambiguous as well.

Consider an annotated ref-word t̂ ∈ L(F ′) and consider two sequences S1 and S2 which

140

define the derivation S ′ ⇒∗F ′ t̂. We showed above how to translate these sequences into

sequences S ′1 and S ′2 which define the derivation S ⇒∗F r̂, for some r̂ such that t̂ =

procκ(r̂). Since F is unambiguous, these sequences are equal. Assume now that S1 and

S2 are not equal, but since their translations into F are the same, then it must be that for

some productionX ⇒F Y Z orX ⇒F τ , there must be two productionsXx1 ⇒F ′ Y y1Zz1

and Xx2 ⇒F ′ Y y2Zz2 , or Xx1 ⇒F ′ τ and Xx2 ⇒F ′ τ at the same position, for some

(x1, y1, z1) 6= (x2, y2, z2). We note that this is not possible since we argued that for a given

derivation S ′ ⇒∗F ′ r̂, the set in which each nonterminal instance belongs, among Vout, Vin,

Vleft, Vmid, Vright, is fixed by its relation to certain instances ofDleft andEright. We conclude

that F ′ is unambiguous.

Assume F ′ is unambiguous. We will prove that F is unambiguous as well. Like-

wise, consider an annotated ref-word r̂ ∈ L(F), and consider two sequences S1 and S2

which define the derivation S ⇒∗F t̂. We showed above how to convert these sequences

into S ′1 and S ′2 which define the derivation S ′ ⇒∗F ′ procκ(r̂). Since F ′ is unambiguous,

then it must hold that S ′1 = S ′2. Note that the translation we showed consisted in replac-

ing productions of the form X ⇒F Y Z by Xx ⇒F ′ Y yZz, X ⇒F κ by X left ⇒F ′ ε,

X ⇒F a by X right ⇒F (a, {κ}) (or X ⇒F (a, T) by X right ⇒F ′ (a, T ∪ {κ})) for

a single fixed production, and X ⇒F τ by Xx ⇒F ′ τ in any other case, for some

x, y, z ∈ {out, in, left,mid, right}. Therefore, the sequence S1 from which S ′1 was ob-

tained is uniquely defined, from which we deduce that S1 = S2, and we conclude that F

is unambiguous.

At the end of the procedure, we obtain an extraction grammar with annotations F † =

(V †,Σ,X , P †, S†) such that there are no rules of the form X → κ in P †, for any κ ∈ CX .

From this, we obtain the annotated grammar G = (V †,Σ,ΩX , P
†, S†) which is equivalent

toH. Furthermore, G is unambiguous if and only ifH is unambiguous.

With respect to the running time of building G, note that in each iteration of the al-

gorithm, by starting on an extraction grammar with annotations F with a set of rules P ,

141

the resulting F ′ has a set of rules P ′ with a size of 9|P |. Since this step is repeated

twice for each variable x ∈ X (once for each variable operation), the total running time is

O(92|X |(32|X ||H|2)) = O(93|X ||H|2). �

Hence, our formalism of annotated grammars captures that of extraction grammars.

Unfortunately, the translation is exponential, intuitively because Ω must cover all possible

sets of variable operations. We note that, in exchange for this, annotated grammars are

strictly more expressive: each output can annotate an arbitrary number of positions in the

string (e.g., every other character), unlike extraction grammars whose mappings have a

fixed number of variables.

We complete Proposition 4.10 to give more intuition about the conciseness of extrac-

tion grammars vs annotated grammars, and the difference in expressiveness.

We first give a simple example to show that, with our notion of equivalence, we may

indeed need an exponential number of symbols in the annotation set, implying that extrac-

tion grammars are in some cases exponentially more concise:

Example 4.1. Consider the following functional extraction grammar H with n vari-

ables x1, . . . , xn and alphabet {a}:

H : A1 → `x1ax1 A2 | `x1 A2 ax1
A2 → `x2ax2 A3 | `x2 A3 ax2

...

An → `xnaxn a | `xn a axn

For the document a, this extraction grammar will output all possible combinations de-

pending on whether axi is at the beginning or end of a for each i ≤ n. Thus, an equivalent

annotated grammar will need to consider all possible subsets of {ax | x ∈ X} as possible

annotations of the character a, which will require an exponential number of rules.

142

We then illustrate why annotated grammars are in fact strictly more expressive: in

addition to capturing all extraction grammars (Proposition 4.10), annotated grammars can

express functions that do not correspond to an annotation grammar.

Example 4.2. Consider a singleton annotation set Ω = {o^}, a singleton alphabet Σ =

{a}, and the annotated grammar with start symbol S and production S → a(a, o^)S|a|ε.

For each string of Σ∗, it produces one output where every other character is annotated.

This cannot be expressed by an extraction grammar, as such a grammar fixes a finite set X

of variables independently from the input document, and each variable is mapped to only

one span.

Enumeration for extraction grammars. As extraction grammars can be rewritten to

annotated grammars in an unambiguity-preserving way (Proposition 4.10), we can derive

from Theorem 4.2 an enumeration result for unambiguous extraction grammars with cubic

preprocessing time in data complexity.

Theorem 4.6. Given an unambiguous extraction grammar H with k variables and a

string s, we can enumerate the mappings of JHK(s) with preprocessing timeO(93k · |H|2 ·

|s|3) (hence, cubic in |s|), and with output-linear delay (independent from s, k, orH).

In data complexity, this improves over the result of (Peterfreund, 2023) for unambigu-

ous extraction grammars, whose preprocessing time is O(92k · |H|2 · |s|5), i.e., our data

complexity is cubic instead of quintic. We leave to future work a study of enumeration

results for restricted classes of extraction grammars via Theorems 4.2 and 4.4.

4.6. Related Work

We have explained how our work is set in the context of document spanners (Fagin et

al., 2015), and in particular of enumeration results for regular spanners (Florenzano et al.,

2018; Amarilli et al., 2019c). A recent survey of much of this literature can be found in

Peterfreund’s PhD thesis (Peterfeund, 2019). The most related work to ours is the more

143

recent introduction of extraction grammars by Peterfreund (Peterfreund, 2023), which we

already discussed.

There are also some other extensions of regular spanners that are reminiscent of CFGs,

e.g., core spanners (featuring equality) or generalized core spanners (with difference) al-

ready introduced in (Fagin et al., 2015), or Datalog evaluated over regular spanners as

in (Peterfreund, ten Cate, Fagin, & Kimelfeld, 2019). However, to our knowledge, there

are no known constant-delay enumeration algorithms in these contexts.

Our study of enumeration for annotated grammars is also reminiscent of enumera-

tion results for queries over trees expressed as tree automata. An algorithm for this was

given by Bagan (Bagan, 2006b) with linear-time preprocessing and constant-delay in data

complexity, for deterministic tree automata, and this was extended in (Amarilli, Bourhis,

Mengel, & Niewerth, 2019d) to nondeterministic automata. However, this is again more

restricted: evaluating a tree automaton on a tree amounts to evaluating a visibly pushdown

automaton over a string representation of the tree, which is again more restrictive than

general context-free grammars.

144

5. ENUMERATION ON SLP-COMPRESSED DOCUMENTS

In this chapter, we study the problem of enumerating results from a query over a com-

pressed document. The model we use for compression are straight-line programs (SLPs),

which are defined by a context-free grammar that produces a single string. For our queries,

we use a model called Annotated Automata, an extension of regular automata that allows

annotations on letters. This model extends the notion of regular spanners as it allows

arbitrarily long outputs.

The main result in this chapter is an algorithm that evaluates such a query by enumer-

ating all results with output-linear delay after a preprocessing phase which takes linear

time on the size of the SLP, and cubic time over the size of the automaton. We achieve this

through a persistent data structure named Enumerable Compact Sets with Shifts which

guarantees output-linear delay under certain restrictions. These results imply constant-

delay enumeration algorithms in the context of regular spanners.

Further, we use an extension of annotated automata which utilizes succinctly encoded

annotations to save an exponential factor from previous results that dealt with constant-

delay enumeration over variable-set automata. Lastly, we extend our results to allow com-

plex document editing while maintaining the constant delay guarantee.

Outline of the chapter. In Section 5.1 we introduce the setting and its corresponding

enumeration problem. In Section 5.2, we present our data structure for storing and enu-

merating the outputs, and in Section 5.3 we show the evaluation algorithm. Section 5.4

offers the application of the algorithmic results to document spanners, plus an extension

for compressed annotation schemes, and Section 5.5 shows how to extend these results to

deal with complex document editing.

145

5.1. Setting and main problem of the chapter

In this section, we present the setting and state the main result of the chapter. First,

we define straight-line programs, which we will use for the compressed representation of

input documents. Then we introduce the definition of annotated automaton, an extension

of regular automata to produce outputs. We use annotated automata as our computational

model to represent queries over documents. By combining both formalisms, we state the

main enumeration problem and the main technical result.

SLP-compression. Recall that a context-free grammar is a tuple G = (N,Σ, R, S0),

where N is a non-empty set of non-terminals, Σ is finite alphabet, S0 ∈ N is the start

symbol and R ⊆ N × (N ∪ Σ)+ is the set of rules. As a convention, the rule (A,w) ∈

R will be written as A → w, and we will call Σ and N the set of terminal and non-

terminal symbols, respectively. A context-free grammar S = (N,Σ, R, S0) is a straight-

line program (SLP) if R is a total function from N to (N ∪ Σ)+ and the directed graph

(N, {(A,B) | (A,w) ∈ R and B appears in w}) is acyclic. For every A ∈ N , let R(A) be

the unique w ∈ (N ∪ Σ)+ such that (A,w) ∈ R, and for every a ∈ Σ let R(a) = a. We

extend R to a morphism R∗ : (N ∪ Σ)∗ → Σ∗ recursively such that R∗(d) = d when d is

a document, and R∗(α1 . . . αn) = R∗
(
R(α1) · . . . ·R(αn)

)
, where αi ∈ (N ∪Σ) for every

i ≤ n. By our definition of SLP, R∗(A) is in Σ+, and uniquely defined for each A ∈ N .

Then we define the document encoded by S as doc(S) = R∗(S0).

Example 5.1. Let S = (N,Σ, R, S0) be an SLP with N = {S0, A,B}, Σ = {a, b, r},

and R = {S0 → ArBABA,A → ba, B → Ara}. We then have that doc(A) = ba,

doc(B) = bara and doc(S) = doc(S0) = barbarababaraba, namely, the string repre-

sented by S.

We define the size of an SLP S = (N,Σ, R, S0) as |S| =
∑

A∈N |R(A)|, namely, the

sum of the lengths of the right-hand sides of all rules. It is important to note that an SLP

S can encode a document doc(S) such that | doc(S)| is exponentially larger with respect

to |S|. For this reason, SLPs stay as a commonly used data compression scheme (Storer

146

& Szymanski, 1982; Kieffer & Yang, 2000; Rytter, 2002; Claude & Navarro, 2011), and

they are often studied particularly because of their algorithmic properties; see (Lohrey,

2012) for a survey. In this chapter, we consider SLP compression to represent documents

and use the formalism of annotated automata for extracting relevant information from the

document.

Annotated automata. An annotated automaton (AnnA for short) is a finite state au-

tomaton where we label some transitions with annotations. Formally, it is a tuple A =

(Q,Σ,Ω,∆, I, F) where Q is a state set, Σ is an input alphabet, Ω is an output alphabet,

I ⊆ Q and F ⊆ Q are the initial and final set of states, respectively, and

∆ ⊆ Q× Σ×Q︸ ︷︷ ︸
read transitions

∪Q× (Σ× Ω)×Q︸ ︷︷ ︸
read-annotate transitions

is the transition relation, which contains read transitions of the form (p, a, q) ∈ Q×Σ×Q,

and read-annotate transitions of the form (p, (a, o^), q) ∈ Q× (Σ× Ω)×Q.

Similarly to transducers (Berstel, 2013), a symbol a ∈ Σ is an input symbol that the

machine reads and o^ ∈ Ω is an output symbol that indicates what the machine prints in

an output tape. A run ρ of A over a document d = a1a2 . . . an ∈ Σ∗ is a sequence of the

form:

ρ := q1
b1−→ q2

b2−→ . . .
bn+1−−→ qn+1

such that q1 ∈ I and, for each i ∈ {1, . . . , n}, it holds that either bi = ai and (qi, ai, qi+1) ∈

∆, or bi = (ai, o^) and (qi, (ai, o^), qi+1) ∈ ∆. We say that ρ is accepting if qn+1 ∈ F .

We define the annotation of ρ as ann(ρ) = ann(b1) · . . . ·ann(bn) such that ann(bi) =

(o^, i) if bi = (a, o^), and ann(bi) = ε otherwise, for each i ∈ {1, . . . , n}. Given an

annotated automatonA and a document d ∈ Σ∗, we define the set JAK(d) of all outputs of

A over d as:

JAK(d) = {ann(ρ) | ρ is an accepting run of A over d}.

147

q1 q2 q3 q4

a, b, r

(b, ◦)

a, r

(b, ◦)

a, r

(b, ◦)

a, b, r

Figure 5.1. Example of an annotated automaton.

Note that each output in JAK(d) is a sequence of the form (o^1, i1) . . . (o^k, ik) for some

k ≤ n where i1 < . . . < ik and each (o^j, ij) means that position ij is annotated with the

symbol o^j .

Example 5.2. Consider an AnnA A = (Q,Σ,Ω,∆, I, F) where I = {q1} Q =

{q1, q2, q3, q4}, Σ = {a, b, r}, Ω = {◦}, and F = {q4}. We define ∆ as the set of tran-

sitions that are depicted in Figure 5.1. For the document d = barbarababaraba the set

JAK(d) contains the strings (◦, 1)(◦, 4)(◦, 8), (◦, 4)(◦, 8)(◦, 10) and (◦, 8)(◦, 10)(◦, 14).

Intuitively, A selects triples of b which are separated by characters other than b.

Annotated automata are the natural regular counterpart of annotated grammars in-

troduced in Chapter 4. Moreover, it is the generalization and simplification of similar

automaton formalisms introduced in the context of information extraction (Fagin et al.,

2015; Peterfreund, 2023), complex event processing (Grez, Riveros, Ugarte, & Vansum-

meren, 2021; Grez & Riveros, 2020), and enumeration in general (Bourhis, Grez, Jachiet,

& Riveros, 2021). In Section 5.4, we show how we can reduce the automaton model of

document spanners, called a variable-set automaton, into a (succinctly) annotated automa-

ton, generalizing the setting in (Schmid & Schweikardt, 2021).

Similar to other automata models, the notion of an unambiguous automaton will be

crucial for us to remove duplicate runs for the same output. Specifically, we say that an

AnnA A = (Q,Σ,Ω,∆, I, F) is unambiguous if for every d ∈ Σ∗ and every w ∈ JAK(d)

there is exactly one accepting run ρ of A over d such that w = ann(ρ). On the other

hand, we say that A is deterministic if ∆ is a partial function of the form ∆ : (Q × Σ ∪

Q × (Σ × Ω)) → Q. Note that every deterministic AnnA is always unambiguous. The

148

definition of unambiguous is in line with the notion of unambiguous annotated grammar

(see Chapter 4, similar notions are also present in Chapter 3), and determinism with the

idea of I/O-determinism used in (Florenzano et al., 2020; Bourhis et al., 2021; Grez et al.,

2021). As usual, one can easily show that for every AnnA A there exists an equivalent

deterministic AnnA (of exponential size) and, therefore, an equivalent unambiguous AnnA

(see (Florenzano et al., 2020; Bourhis et al., 2021; Grez et al., 2021) for a proof of this

result).

Lemma 5.1. For every annotated automaton A there exists a deterministic annotated

automaton A′ such that JAK(d) = JA′K(d) for every d ∈ Σ∗.

Regarding the expressive power of annotated automata, we note that they have the

same expressive power as MSO formulas with monadic second-order free variables. We

refer the reader to Chapter 3 for an analogous result in the context of nested documents. In

fact, the equivalence between these models can be obtained as a corollary of Proposition 1

in Chapter 3. Finally, by Lemma 5.1 we do not loose expressive power if we restrict to the

class unambiguous annotated automata, since we can convert every annotated automata

into an deterministic one with an exponential cost in the size of the initial automaton.

Main result. We are interested in the problem of evaluating annotated automata over an

SLP-compressed document, namely, to enumerate all the annotations over the document

represented by an SLP. Formally, we define the main evaluation problem of this chapter as

follows. Let C be any class of AnnA (e.g., unambiguous AnnA).

Problem: SLPENUM[C]

Input: An AnnA A ∈ C and an SLP S

Output: Enumerate JAK(doc(S))

As established, we assume here the computational model of Random Access Ma-

chines (RAM) with uniform cost measure and addition and subtraction as basic opera-

tions. Further, as it is commonly done on algorithms over SLPs and other compression

149

schemes, we assume that the registers in the underlying RAM-model allow for constant-

time arithmetical operations over positions in the uncompressed document (i.e., they have

O(log | doc(S)|) size).

The notion of output-linear delay is a refinement of the better-known constant-delay

bound, which requires that each output has a constant size (i.e., with respect to the input).

Since even the document encoded by an SLP can be of exponential length, it is more

reasonable in our setting to use the output-linear delay guarantee.

The following is the main technical result of this chapter.

Theorem 5.1. Let C be the class of all unambiguous AnnAs. Then one can solve the

problem SLPENUM[C] with linear preprocessing time and output-linear delay. Specif-

ically, there exists an enumeration algorithm that runs in |A|3 × |S|-preprocessing time

and output-linear delay for enumerating JAK(doc(S)) given an unambiguous AnnAA and

an SLP S.

We dedicate the rest of the chapter on presenting the enumeration algorithm of The-

orem 5.1. In Section 5.3 we explain the preprocessing phase of the algorithm. Before

that, in the following section, we explain how Enumerable Compact Sets with Shifts work,

which is the data structure that we use to store the outputs during the preprocessing phase.

5.2. Enumerable compact sets with shifts

In this section, we present the data structure, called Enumerable Compact Sets with

Shifts, that will be used to compactly store the outputs of evaluating an annotated automa-

ton over a straight-line program. This structure extends Enumerable Compact Sets (ECS)

introduced in Chapter 3 (which were, in turn, strongly inspired by the work in (Amarilli et

al., 2017, 2019a)). Indeed, people have also used ECS extensions in (Bucchi, Grez, Quin-

tana, Riveros, & Vansummeren, 2022). This new version extends ECS by introducing a

shift operator, which allows to succinctly move all outputs’ positions with a single call.

150

Although the shift nodes require a revision of the complete ECS model, it simplifies the

evaluation algorithm in Section 5.3 and achieves output-linear delay for enumerating all

the outputs. For completeness of presentation, this section goes through all main details

of ECS, as it was done in Chapter 3, and how to modify them with shifts.

The structure. Let Ω be an output alphabet such that Ω has no elements in common with

Z or {∪,�} (i.e., Ω ∩ Z = ∅ and Ω ∩ {∪,�} = ∅). We define an Enumerable Compact

Set with Shifts (Shift-ECS) as a tuple:

D = (Ω, V, `, r, λ)

such that V is a finite sets of nodes, ` : V → V and r : V → V are the left and right partial

functions, and λ : V → Ω ∪ Z ∪ {∪,�} is a labeling function. We assume that D forms

an acyclic graph, namely, the induced graph (V, {(v, `(v)), (v, r(v)) | v ∈ V }) is acyclic.

Further, for every node v ∈ V , `(v) is defined iff λ(v) ∈ Z ∪ {∪,�}, and r(v) is defined

iff λ(v) ∈ {∪,�}. Notice that, by definition, nodes labeled by Ω are bottom nodes in the

acyclic structure formed by D, and nodes labeled by Z or {∪,�} are inner nodes. Here,

Z-nodes are unary operators (i.e., r(·) is not defined over them), and ∪-nodes or �-nodes

are binary operators. Indeed, we say that v ∈ V is a bottom node if λ(v) ∈ Ω, a product

node if λ(v) = �, a union node if λ(v) = ∪, and a shift node if λ(v) ∈ Z. Finally, we

define the size of D as |D| = |V |.

The outputs retrieved from a Shift-ECS are strings of the form (o^1, i1)(o^2, i2) . . . (o^`, i`),

where o^j ∈ Ω and ij ∈ Z. To build them, we use the shifting function sh : (Ω×Z)×Z→

(Ω× Z) such that sh((o^, i), s) = (o^, i+ s). We extend this function to strings over Ω× Z

such that sh((o^1, i1) . . . (o^`, i`), s) = (o^1, i1 + s) . . . (o^`, i` + s) and to set of strings such

that sh(L, s) = {sh(w, s) | w ∈ L} for every L ⊆ (Ω× Z)∗.

Each node v ∈ V of a Shift-ECS D = (Ω, V, `, r, λ) defines a set of output strings.

Specifically, we associate a set of strings JDK(v) recursively as follows. For any two sets

of strings L1 and L2, define L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}. Then:

151

xv4 : yv5 :

∪v3 :

+2v2 :

�v1 :

Figure 5.2. An example of a Shift-ECS with output alphabet {x, y}. We
use dashed and solid edges for the left and right partial functions, respec-
tively.

• if λ(v) = o^∈ Ω, then JDK(v) = {(o^, 1)};

• if λ(v) = ∪, then JDK(v) = JDK(`(v)) ∪ JDK(r(v));

• if λ(v) = �, then JDK(v) = JDK(`(v)) · JDK(r(v)); and

• if λ(v) ∈ Z, then JDK(v) = sh(JDK(`(v)), λ(v)).

Example 5.3. Suppose Ω = {x, y}. Consider the Shift-ECS D = (Ω, V, `, r, λ) where

V = {v1, v2, v3, v4, v5}, `(v1) = v4, r(v1) = v2, `(v2) = v3, `(v3) = v4, r(v3) = v5,

λ(v1) = �, λ(v2) = +2, λ(v3) = ∪, λ(v4) = x and λ(v5) = y. We show an illustration of

this Shift-ECS in Figure 5.2. One can easily check that the sets of words JDK associated

to each node are:
JDK(v4) = {(x, 1)}

JDK(v5) = {(y, 1)}

JDK(v3) = {(x, 1), (y, 1)}

JDK(v2) = {(x, 3), (y, 3)}

JDK(v1) = {(x, 1)(x, 3), (x, 1)(y, 3)}.

The enumeration algorithm. Given that every node of a Shift-ECS represents a set of

strings, we are interested in enumerating them with output-linear delay. Specifically, we

focus on the following problem. Let C be a class of Enumerable Compact Sets with Shifts.

152

Problem: SHIFTECSENUM[C]

Input: a Shift-ECS D ∈ C and a node v of D

Output: Enumerate JDK(v).

The plan then is to provide an enumeration algorithm with output-linear delay for

SHIFTECSENUM[C] and some helpful class C. A reasonable strategy to enumerate the set

JDK(v) is to do a traversal on the structure while accumulating the shift values in the path

to each leaf. However, to be able to do this without repetitions and output-linear delay, we

need to guarantee two conditions: first, that one can obtain every output from D in only

one way and, second, union and shift nodes are close to an output node (i.e., a bottom

node or a product node), in the sense that we can always reach them in a bounded number

of steps. To ensure that these conditions hold, we impose two restrictions on an ECS.

(i) We say that D is duplicate-free if D satisfies the following two properties: (1)

for every union node v it holds that JDK(`(v)) and JDK(r(v)) are disjoint, and

(2) for every product node v and for every w ∈ JDK(v), there exists a unique

way to decompose w = w1 · w2 such that w1 ∈ JDK(`(v)) and w2 ∈ JDK(r(v)).

(ii) We define the notion of k-bounded Shift-ECS as follows. Given a Shift-ECS

D, define the (left) output-depth of a node v ∈ V , denoted by odepthD(v),

recursively as follows: odepthD(v) = 0 whenever λ(v) ∈ Ω or λ(v) = �, and

odepthD(v) = odepthD(`(v)) + 1 whenever λ(v) ∈ {∪} ∪ Z. Then, for k ∈ N

we say that D is k-bounded if odepthD(v) ≤ k for all v ∈ V .

PROPOSITION 5.1. Fix k ∈ N. Let Ck be the class of all duplicate-free and k-bounded

Shift-ECSs. Then one can solve the problem SHIFTECSENUM[Ck] with output-linear de-

lay and without preprocessing (i.e. constant preprocessing time).

PROOF. Let D = (Ω, V, `, r, λ) be a duplicate-free and k-bounded Shift-ECS. The

algorithm that we present is a depth-first traversal of the DAG, done in a recursive fashion

153

Algorithm 4 Enumeration over a node u from some ECS D = (Ω, V, `, r, λ).

1: procedure ENUMERATE(v)
2: τ ← CREATE(v)
3: while τ .NEXT = true do
4: τ .PRINT(0)

5:
6: . Bottom node iterator τΩ

7: procedure CREATE(v) . Sup. λ(v) ∈ Ω
8: u← v
9: hasnext← true

10:
11: procedure NEXT
12: if hasnext = true then
13: hasnext← false
14: return true
15: return false
16:
17: procedure PRINT(s)
18: print : (λ(u), 1 + s)

19:
20: . Product node iterator τ�
21: procedure CREATE(v) . Sup. λ(v) = �
22: u← v
23: τ` ← CREATE(`(u))
24: τ`.NEXT
25: τr ← CREATE(r(u))

26:
27: procedure NEXT
28: if τr.NEXT = false then
29: if τ`.NEXT = false then
30: return false
31: τr ← CREATE(r(u))
32: τr.NEXT

33: return true
34:
35: procedure PRINT(s)
36: τ`.PRINT(s)
37: τr.PRINT(s)

38: . Union/Z node iterator τ∪/Z
39: procedure CREATE(v)
40: . Sup. λ(v) ∈ {∪} ∪ Z
41: St← push(St, (v, 0))
42: St← TRAVERSE(St)
43: τ ← CREATE(top(St).u)

44:
45: procedure NEXT
46: if τ .NEXT = false then
47: St← pop(St)
48: if length(St) = 0 then
49: return false
50: (u, s)← top(St)
51: if λ(u) ∈ {∪} ∪ Z then
52: St← TRAVERSE(St)

53: τ ← CREATE(u)
54: τ .NEXT
55: return true
56:
57: procedure PRINT(s)
58: (u, s′)← top(St)
59: τ .PRINT(s+ s′)

60:
61: procedure TRAVERSE(St)
62: while λ(top(St).u) ∈ {∪} ∪ Z do
63: (u, s)← top(St)
64: St← pop(St)
65: if λ(u) ∈ Z then
66: v ← `(u)
67: s′ ← s+ λ(u)
68: St← push(St, (v, s′))
69: else
70: St← push(St, (r(u), s))
71: St← push(St, (`(u), s))

72: return St

to ensure that after retrieving some output w, the next one w′ can be printed inO(k ·(|w|+

|w′|)) time. The entire procedure is detailed in Algorithm 4.

154

To simplify the presentation of the algorithm, we use an iterator interface that, given a

node v, it contains all information and methods to enumerate the outputs JDK(v). Specifi-

cally, an iterator τ must implement the following three methods:

CREATE(v)→ τ τ .NEXT→ b τ .PRINT(s)→∅

where v is a node, b is either true or false, and ∅ means that the method does not return an

output. The first method, CREATE, receives a node v and creates an iterator τ of the type of

v. We will implement three types of iterators, one for bottom nodes (τΩ), one for product

nodes (τ�), and one for union and Z-nodes together (τ∪/Z). The second method, τ .NEXT,

moves the iterator to the next output, returning true if, and only if, there is an output to

print. Then the last method, τ .PRINT, receives an integer value s, and writes the current

output pointed by τ to the output registers after shifting the output by s. We assume

that, after creating an iterator τ , one must first call τ .NEXT to move to the first output

before printing. Furthermore, if τ .NEXT outputs false, then the behavior of τ .PRINT is

undefined. Note that one can call τ .PRINT several times, without calling τ .NEXT, and the

iterator will write the same output each time in the output registers.

Assume we can implement the iterator interface for each type. Then the procedure

ENUMERATE(v) in Algorithm 4 (lines 1-4) shows how to enumerate the set JDK(v) by

using an iterator τ for v. In the following, we show how to implement the iterator interface

for each type and how the size of the next output bounds the delay between two outcomes.

We start by presenting the iterator τΩ for a bottom node v (lines 6-18), called a bot-

tom node iterator. We assume that each τΩ has internally two values, denoted by u and

hasnext, where u is a reference to v and hasnext is a boolean variable. The purpose of

a bottom node iterator is only to print (λ(u), 1 + s) for some shift s. For this goal, when

we create τΩ, we initialize u equal to v and hasnext = true (lines 8-9). Then, when we

call τΩ .NEXT for the first time, we swap hasnext from true to false and output true (i.e.,

there is one output ready to be returned). Then any following call to τΩ .NEXT will be false

(lines 11-15). Finally, the τΩ .PRINT writes the pair (λ(u), 1 + s) to the output registers

155

(lines 17-18). Here, we assume the existence of a method print on the RAM model for

writing the next entry to the output registers.

For a product node, we present a product node iterator τ� in Algorithm 4 (lines 20-

37). This iterator receives a product node v with λ(v) = � and stores a reference of v,

called u, and two iterators τ` and τr, for iterating through the left and right nodes `(u)

and r(u), respectively. The CREATE method initializes u with v, creates the iterators τ`

and τr, and calls τ`.NEXT to be prepared for the first call of τ� .NEXT (lines 21-25). The

purpose of τ� .NEXT is to fix one output for the left node `(u) and iterate over all outputs

of r(u) (lines 27-33). When we stop enumerating all outputs of JDK(r(u)), we move to

the next output of τ`, and iterate again over all JDK(r(u)) (lines 29-32). For printing, we

recursively call first the printing method of τ`, and then the one of τr (lines 35-37).

The most involved case is the union/Z node iterator τ∪/Z (lines 38-72). This iterator

receives a node v of one of two types, either a union node, or a Z-node. It keeps a stack St

and an iterator τ . The elements in the stack are pairs (u, s) where u is a node and s is an

integer. We assume the standard implementation of a stack with the native methods push,

pop, top, and length: the first three define the standard operations over stacks, and length

counts the elements in a stack. The purpose of the stack is to perform a depth-first-search

traversal of all union and Z nodes below v, reaching all possible output nodes u such that

there is a path of only union and Z nodes between v and u. At every point, if an element

(u, s) is in the stack, then s is equal to the sum of all Z nodes in the path from v to u. If

the top node of St is a pair (u, s) such that u is an output node, then τ is an iterator for u,

which enumerates all their outputs. If p = (u, s), we will use the notation p.u to refer to

u.

In order to perform the depth-first-search traversal of union and Z nodes, we use the

auxiliary method TRAVERSE(St) (lines 61-72). While the node u at the top of St is a union

or a shift node, we pop the top pair (u, s) from St. If u is a shift node (lines 65-68), we

push the pair (v, s′) in the stack where v is the node `(u) pointed by u and s′ is the sum of

the current shift swith the shift λ(u). Otherwise, if u is a union node (lines 69-71), we first

156

1.

a3 a4

∪

+2
a2

∪ a5

∪

+3
a1

∪ a6

∪v :

St : (∪, 0)

2.

a3 a4

∪

+2
a2

∪ a5

∪

+3
a1

∪ a6

∪v :

(a1, 0)(+3, 0)(a6, 0)

3.

a3 a4

∪

+2
a2

∪ a5

∪

+3
a1

∪ a6

∪v :

(a2, 3)(+2, 3)(a5, 3)(a6, 0)

4.

a3 a4

∪

+2
a2

∪ a5

∪

+3
a1

∪ a6

∪v :

(a3, 5)(a4, 5)(a5, 3)(a6, 0)

Figure 5.3. Evolution of the stack St (written on the bottom and repre-
sented by dashed arrows) for an iterator over the node v in the figure. The
underlying ECS is made of union nodes, two Z nodes, and six bottom
nodes. The first figure is St after calling St ← push(St, (v, 0)), the sec-
ond is after calling St ← TRAVERSE(St). The last two figures represent
successive calls to pop(St), St← TRAVERSE(St).

push the right pair (r(u), s) followed by the left pair (`(u), s) into the stack. The while-

loop will eventually reach an output node at the top of the stack and end. It is important

to note that TRAVERSE(St) takes O(k) steps, given that the ECS is k-bounded. Then if

k is fixed, the TRAVERSE procedure takes constant time. In Figure 5.3, we illustrate the

evolution of a stack St inside a union node iterator when we call TRAVERSE(St) several

times.

The methods of a union/Z node iterator τ∪/Z are then straightforward. For CREATE

(lines 39-43), we push (v, 0) and then traverse St, finding the first leftmost output node

from v (lines 41-42). Then we build the iterator τ of this output node for being ready

to start enumerating their outputs (line 43). For NEXT, we consume all outputs by calling

τ .NEXT (line 46). When there are no more outputs, we pop the top node from St and check

if the stack is empty or not (lines 47-48). If this is the case, there are no more outputs and

we output false. Otherwise, if St is non-empty but the top pair (u, s) of St contains a

union node, then we apply the TRAVERSE method for finding the leftmost output node

157

from u (lines 50-52). When the procedure is done, we know that the node in the top pair

is an output node, and then we create an iterator and move to its first output (lines 53-54).

For PRINT(s), we see the pair (u, s′) at the top, where we remind that s′ represents the

sum of all Z nodes on the way to u (line 58), and u is assumed to be an output node. Then,

we call the print method of τ which is ready to write the current output, and over which

we add the value s+ s′ (line 59).

In order to prove the correctness of the enumeration procedure, one can verify that

ENUMERATE(v) in Algorithm 4 enumerates all the outputs in the set JDK(v) one by one,

and without repetitions, which follows from the fact thatD is duplicate-free. To bound the

delay between outputs, the fact that D is k-bounded implies that the delay is bounded by

O(k · |w0|) if w0 is the first output, or O(k · (|w|+ |w′|)) if w and w′ are the previous and

next outputs, respectively. Specifically:

• CREATE(v) takes time O(k · |w0|),

• NEXT takes timeO(k · |w0|) for the first call, andO(k · (|w|+ |w′|)) for the next

call, and

• PRINT(s) takes time O(k · |w′|) where w′ is the current output to be printed.

Overall, ENUMERATE(v) in Algorithm 4 requires O(k · (|w| + |w′|)) delay to write the

next output w′ in the output register, after printing the previous output w.

We end by pointing out that the existence of an enumeration algorithm E with delay

O(k · (|w| + |w′|)) between any consecutive outputs w and w′, implies the existence of

an enumeration algorithm E ′ with output-linear delay as defined in Section 5.1. We start

noting that k is a fixed value and then the delay of E only depends on |w| + |w′|. For

depending only on the next output w′, one can perform the following strategy for E ′: start

by running E , enumerate the first output w0, advance k · |w0| more steps of E , and stop.

Then continue running E , enumerate the next output w1, advance k · |w1| more steps, and

stop1. By repeating this enumeration process, one can verify that the delay between the

1If advancing k · |w1| more steps requires printing part of the next outputs w2, w3, . . ., we could store these
outputs in some temporary registers of the RAM model to retrieve them later.

158

i-th output wi and the (i+ 1)-th output wi+1 is O(|wi+1|). Therefore, E ′ has output-linear

delay. �

Operations. The next step is to provide a set of operations that allow extending a Shift-

ECS D in a way that maintains k-boundedness. Fix a Shift-ECS D = (Ω, V, `, r, λ). Then

for any o^∈ Ω, v1, . . . , v4, v ∈ V and k ∈ Z, we define the operations:

add(o^) → v′ prod(v1, v2) → v′

union(v3, v4) → v′ shift(v, k) → v′

such that JDK(v′) := {(o^, 1)}; JDK(v′) := JDK(v1) · JDK(v2); JDK(v′) := JDK(v3) ∪

JDK(v4); and JDK(v′) := sh(JDK(v), k), respectively. Here we assume that the union and

prod respect properties (1) and (2) of a duplicate-free Shift-ECS, namely, JDK(v3) and

JDK(v4) are disjoint and, for every w ∈ JDK(v1) · JDK(v2), there exists a unique way to

decompose w = w1 · w2 such that w1 ∈ JDK(v1) and w2 ∈ JDK(v2).

Strictly speaking, each operation above should receive as input the data structure D,

and output a fresh node v′ plus a new data structure D′ = (Ω, V ′, `′, r′, λ′) such that D′ is

an extension of D, namely, obj ⊆ obj′ for every obj ∈ {V, `, r, λ} and v′ ∈ V ′ \ V . Note

that we assume that each operation can only extend the data structure with new nodes

and that old nodes are immutable after each operation. For simplification, we will not

explicitly refer to D on the operations above, although they modify D directly by adding

new nodes.

To define the above operations, we impose further restrictions on the structure below

the operations’ input nodes to ensure k-boundedness. Towards this goal, we introduce the

notion of safe nodes. We say that a node v ∈ V is safe if v is a shift node and either

`(v) is an output node (i.e., a bottom or product node), or u = `(v) is an union node,

odepthD(u) = 1, and r(u) is a shift node with odepthD(r(u)) ≤ 2. In other words, v is

safe if it is a shift node over an output node or over a union node with an output on the left

and a shift node on the right, whose output depth is less or equal to 2. The trick then is to

159

show that all operations over Shift-ECSs receive only safe nodes and always output safe

nodes. As we will see, safeness will be enough to provide a light structural restriction on

the operations’ input nodes in order to maintain k-boundedness after each operation.

Next, we show how to implement each operation assuming that every input node is

safe. In fact, the cases of add and shift are straightforward. For add(o^) → v′ we extend

D with two fresh nodes v′ and u such that λ(u) = o^, λ(v′) = 0, and `(v′) = u. In

other words, we hang a fresh 0-shift node v′ over a fresh o^-node u, and output v′. For

shift(v, k) → v′, add the fresh node v′ to D, and set `(v′) = `(v) and λ(v′) = λ(v) + k.

One can easily check that in both cases the node v′ represents the desired set, is safe, and

k-boundedness is preserved.

To show how to implement prod(v1, v2) → v′, recall that v1 and v2 are safe and, in

particular, both are shift nodes. Then we need to extend D with fresh nodes v′, v′′, and

v′′′ such that `(v′) = v′′, `(v′′) = `(v1), r(v′′) = v′′′, `(v′′′) = `(v2), λ(v′) = λ(v1),

λ(v′′) = � and λ(v′′′) = λ(v2) − λ(v1). Figure 5.4(a) shows a diagram of this gadget.

One can easily check that v′ represents the product of v1 and v2, v′ is safe, and the new

version of D is k-bounded whenever D is also k-bounded.

The last operation is union(v3, v4) → v′. The strategy is then to prove that if v3 and

v4 are safe nodes, then we can implement the operator and produce a safe node v′. Let us

define v′ as follows:

• If at least one among `(v3) and `(v4) is an output node, assume without loss of

generality that it is `(v3). We extend D with nodes v′, v′′ and v′′′, where `(v′) =

v′′, `(v′′) = `(v3), r(v′′) = v′′′, `(v′′′) = `(v4), λ(v′) = λ(v3), λ(v′′) = ∪ and

λ(v′′′) = λ(v4) − λ(v3). This construction is identical to the prod construction

shown in Figure 5.4(a), except replacing v1 and v2 by v3 and v4 respectively, and

λ(v′′) from � to ∪.

• When both u3 = `(v3) and u4 = `(v4) are union nodes, let k′1 = λ(r(u3)) and let

k′2 = λ(r(u4)). We extend D with fresh nodes v′, v′1, v
′
2, v
′
3, v
′
4, v
′
5 and v′6. Define

160

λ(v′) = k1, λ(v′1) = ∪, λ(v′2) = k2 − k1, λ(v′3) = ∪, λ(v′4) = k1 + k′1 − k2,

λ(v′5) = ∪ and λ(v′6) = k2 +k′2−k1−k′1. Then define `(v′) = v′1, `(v′1) = `(u3),

r(v′1) = v′2, `(v′2) = v′3, `(v′3) = `(u4), r(v′3) = v′4, `(v′4) = v′5, `(v′5) = `(r(u3)),

r(v′5) = v′6 and `(v′6) = `(r(u4)). We show an illustration of this gadget in

Figure 5.4(b).

We can prove that the last construction has several interesting properties. First, one

can check that JDK(v′) = JDK(v3) ∪ JDK(v4) since each shift value is constructed so that

the accumulated shift value from v′ to each node remains unchanged. Thus, the semantics

is well-defined. Second, union can be computed in constant time in |D| given that we only

need to add a fixed number of fresh nodes. Furthermore, the produced node v′ is safe, even

though some of the new nodes are not necessarily safe. Finally, the new D is 3-bounded

wheneverD is 3-bounded. This is straightforward to see for the case when `(v3) (or `(v4))

is an output node. To see this for the second case, we first have to notice that `(u3) and

`(u4) are output nodes, and that odepth(`(r(u3))) ≤ 1 and odepth(`(r(u4))) ≤ 1. We

can check the depth of each node going from the bottom to the top: odepth(v′6) ≤ 2,

odepth(v′5) ≤ 2, odepth(v′4) ≤ 3, odepth(v′3) ≤ 1, odepth(v′2) ≤ 2, odepth(v′1) ≤ 1 and

odepth(v′) ≤ 2.

By the previous discussion, if we start with a Shift-ECS D which is 3-bounded (in

particular, empty) and we apply the add, prod, union and shift operators between safe

nodes (which also produce safe nodes), then the result is 3-bounded as well. Furthermore,

the data structure is fully-persistent (Driscoll, Sarnak, Sleator, & Tarjan, 1986b): for every

node v in D, JDK(v) is immutable after each operation. Finally, by Proposition 5.1, the

result can be enumerated with output-linear delay.

Theorem 5.2. The operations add, prod, union and shift take constant time and are

fully persistent. Furthermore, if we start from an empty Shift-ECS D and apply these

operations over safe nodes, the result node v′ is always a safe node and the set JDK(v) can

be enumerated with output-linear delay (without preprocessing) for every node v.

161

`(v1)

k1v1 :

`(v2)

k2v2 :

(k2 − k1)v′′′ :

�v′′ :

k1v′ :

(b)
`(u3) `(r(u3))

k′1r(u3) :

∪u3 :

k1v3 :

`(u4) `(r(u4))

k′2r(u4) :

∪u4 :

k2v4 :

k1v′ :

∪v′1 :

k2 − k1v′2 :

∪v′3 :

k1 + k′1 − k2v′4 :

∪v′5 :

k2 + k′2
−k1 − k′1

v′6 :

(c)

Figure 5.4. (a) Gadget for prod(D, v1, v2, k). (b) Gadget for
union(D, v3, v4). We use dashed and solid edges for the left and right map-
pings, respectively. Node names are in grey at the left of each node. Nodes
in square boxes are the input and output nodes of each operation.

The empty- and ε-nodes. The last step of constructing our model of Shift-ECS is the

inclusion of two special nodes that produce the empty set and the empty string, called

empty- and ε-nodes, respectively.

We start with the empty node, which is easier to incorporate into a Shift-ECS. Consider

a special node⊥ and include it on every Shift-ECSD, such that JDK(⊥) = ∅. Then extend

the operations prod, union, and shift accordingly to the empty set, namely, prod(v1, v2)→

⊥ whenever v1 or v2 is equal to ⊥, union(v,⊥) = union(⊥, v)→ v, and shift(⊥, k)→ ⊥

for every nodes v1, v2, v, and k ∈ Z. It is easy to check that one can include the ⊥-node

into Shift-ECSs without affecting the guarantees of Theorem 5.2.

The other special node is the ε-node. Let ε denote a special node, included on every

Shift-ECS D, such that JDK(ε) = {ε}. With these new nodes in a Shift-ECS, we need

to revise our notions of output-depth, duplicate-free, and k-boundedness to change the

162

enumeration algorithm, and to extend the operations add, prod, union, and shift over so-

called ε-safe nodes (i.e., the extension of safe nodes with ε).

First, we add the condition that for any Shift-ECS D the ε-node is either parentless

(and thus disconnected to the rest of the structure), or if it has any parents, then they must

be parentless union nodes, and the ε-node must be the left child of each. We call this the

ε-condition. We will see that any node that might be the result of applying the operations

add, prod, union and shift is equivalent to a node in a Shift-ECS D that satisfies this.

The notions of output-depth, duplicate-free, and k-boundedness are mostly unchanged

in this setting: If v is the ε-node, then odepth(v) = 0, and if v is a union node with the

ε-node as its left child, odepth(v) = 1. No other node has the ε-node as a descendant,

so the definition of output-depth remains the same; and the definitions of duplicate-free

and k-bounded remain unchanged as well. By assuming the ε-condition, one can see that

enumeration remains identical as before, except now the ε-node might be seen once as the

left child of the root. Then we can state the following as a corollary of Proposition 5.1:

Corollary 5.1. Fix k ∈ N. Let Ck be the class of all duplicate-free and k-bounded

Shift-ECSs that satisfy the ε-condition. Then one can solve the problem SHIFTECSENUM[Ck]

with output-linear delay and without preprocessing (i.e. constant preprocessing time).

We now define the notion of ε-safe nodes. These are nodes v which satisfy one of three

conditions: (1) v is the ε-node, (2) v is safe and none of its descendants is the ε-node, and

(3) v is a union node, its left child is the ε-node, and its right child is a safe node for which

none of its descendants is the ε-node. To guide the constructions, we call these conditions

1, 2 and 3. These conditions will allow us to use the constructions already given for prod,

union, and shift over safe nodes, such as node v, in the case of condition 2, or r(v), in

the case of condition 3. The rest of this proof will be extending these operations to work

over ε-safe nodes, and check that they can be done in constant time, return an ε-safe node,

maintain the ε-condition in the Shift-ECS, and satisfy the specifications of each operation

(i.e., that for the resulting node v′ the set JDK(v′) contains what it should).

163

We define the operation add the same as in a Shift-ECS without ε. The operation

add(ε) is not defined since the ε-node is always part of D.

The prod case is somewhat more involved. First, assume that some node among v1

and v2 is the ε-node (condition 1). Without loss of generality, assume that v1 = ε . If

v2 is the ε-node as well, we simply return v1; and if v2 is not the ε-node (conditions 2

or 3), we simply return v2. The requirements of the construction follow trivially. Now,

assume that both v1 and v2 satisfy condition 2. For this case we simply return prod(v1, v2)

as it was defined for a Shift-ECS without ε. Lastly, assume at least one node among v1

and v2 satisfies condition 3 and none of them are the ε-node. These cases are depicted in

Figure 5.5. We describe them formally as follows, assuming that v′ is the output and using

the operations union and prod as they were defined for a Shift-ECS without ε.

• If v1 satisfies condition 2 and v2 satisfies condition 3, define v′′ ← prod(v1, r(v2))

and v′ ← union(v1, v
′′).

• If v1 satisfies condition 3 and v2 satisfies condition 2, define v′′ ← prod(r(v1), v2)

and v′ ← union(v′′, v2).

• If both v1 and v2 satisfy condition 3, define v′′ ← prod(r(v1), r(v2)), v3 ←

union(v′′, r(v2)), and v4 ← union(r(v1), v3). Lastly, define λ(v′) = ∪, `(v′) =

ε, and r(v′) = v4.

One can verify that these constructions work as expected, namely, JD′K(v) = JDK(v1) ·

JDK(v2). Also, if v1 and v2 are ε-safe, then v′ is ε-safe as well. Also, each construction

does a fixed number of steps, so they take constant time.

Similarly, we address the operation union(v3, v4)→ v′ by considering each case sepa-

rately.

• Assume v3 is the ε-node (condition 1). (1) If v4 also is the ε-node, then we

simply return v′ ← ε. (2) If v3 satisfies condition 2, let v′ be a union node such

that `(v′) = ε and r(v′) = v4. It can be seen that v′ satisfies condition 3 and that

its ε-safe. (3) If v4 satisfies condition 3, we simply return v′ ← v4.

164

(a)

unionv′ ←

v1

prod

v2

ε r(v2)

(b)

unionv′ ←

v2

prod

v1

ε r(v1)

(c)

∪v′ ←
ε union

union

prod v2

ε r(v2)

v1

ε r(v1)

Figure 5.5. Gadgets for prod as defined for a Shift-ECS with the ε-node.

• Assume v3 satisfies condition 2. (1) If v4 is the ε-node, we return v′ ← union(v4, v3)

using the construction for the case (2) in the previous item. (2) If v4 satisfies

condition 2, then we return v′ ← union(v3, v4) as it was defined for Shift-ECSs

without ε. (3) If v4 satisfies condition 3, let v′′ ← union(v3, r(v4)), and let v′ be

a union node such that `(v′) = ε and r(v) = v′′. Again, it can be seen that v′ is

ε-safe.

• Assume v3 satisfies condition 3. (1) If v4 is the ε-node, we simply return v′ ← ε.

(2) If v4 satisfies condition 2, we follow the construction given in case (3) of the

previous item. (3) If v4 satisfies condition 3, let v′′ ← union(r(v3), r(v4)) and

let v′ be a union node such that `(v′) = ε and r(v) = v′′. It can be seen that v′ is

ε-safe.

Clearly, in each of these cases above we have that JDK(v′) = JDK(v3) ∪ JDK(v4), and

if v3 and v4 are ε-safe, then v′ is ε-safe as well. In addition, they all take constant time and

in each case the new version of D satisfies the ε-condition.

The operation shift(v, k) is defined as follows. If v is the ε-node, we return v′ ← ε. If

v satisfies condition 2, we return v′ ← shift(v, k) as it was defined for Shift-ECSs without

ε. If v satisfies condition 3, let v′′ ← shift(r(v), k) and let v′ be a union node such that

`(v′) = ε and r(v) = v′′. It can be seen that v′ is ε-safe.

By the previous constructions, we can conclude that the operations add, prod, union

and shift, when done over ε-safe nodes, can be done in constant time, return an ε-safe

165

node, maintain the ε-condition in the Shift-ECS, and satisfy the specifications of each

operation. Furthermore, by virtue of Corollary 5.1, the set JDK(v) can be enumerated with

output-linear delay for each node v in D.

Theorem 5.3. The operations add, prod, union and shift over Shift-ECS extended with

empty- and ε-nodes take constant time. Furthermore, if we start from an empty Shift-

ECS D and apply add, prod, union, and shift over ε-safe nodes, the resulting node v′ is

always an ε-safe node, and the set JDK(v) can be enumerated with output-linear delay

without preprocessing for every node v.

For the rest of the chapter, we assume that a Shift-ECS is a tupleD = (Ω, V, `, r, λ,⊥, ε)

where we define Ω, V, `, r, λ as before, and ⊥, ε ∈ V are the empty and ε nodes, respec-

tively. Further, we assume that `, r, and λ are extended accordingly, namely, `(v) and

r(v) are not defined whenever v ∈ {⊥, ε}, and λ : V → Ω ∪ Z ∪ {∪,�,⊥, ε} such that

λ(v) = ⊥ (λ(v) = ε) iff v = ⊥ (v = ε, respectively).

5.3. Evaluation of annotated automata over SLP-compressed strings

This section shows our algorithm for evaluating an annotated automaton over an SLP-

compressed document. This evaluation is heavily inspired by the preprocessing phase

in (Schmid & Schweikardt, 2021), as it primarily adapts the algorithm to the Shift-ECS

data structure. In a nutshell, we keep matrices of Shift-ECS nodes, where each matrix

represents the outputs of all partial runs of the annotated automaton over fragments of the

compressed strings. We extend the operations of Shift-ECS over matrices of nodes, which

will allow us to compose matrices, and thus compute sequences of compressed strings.

Then the algorithm proceeds in a dynamic programming fashion, where matrices are com-

puted bottom-up for each non-terminal symbol. Finally, the matrix that corresponds to the

start symbol of the SLP will contain all the outputs. The result of this process is that each

matrix entry succinctly represents an output set that can enumerated with output-linear

delay.

166

Matrices of nodes. The main ingredient for the evaluation algorithm are matrices of

nodes for encoding partial runs of annotated automata. To formalize this notion, fix an

unambiguous AnnA A = (Q,Σ,Ω,∆, I, F) and a Shift-ECS D = (Ω, V, `, r, λ,⊥, ε).

We define a partial run ρ of A over a document d = a1a2 . . . an ∈ Σ∗ as a sequence

ρ := p1
b1−→ . . .

bn−→ pn+1

such that p1 ∈ Q, and for each i ∈ [1, n] either bi = ai and (qi, ai, qi+1) ∈ ∆, or bi = (ai, o^)

and (qi, (ai, o^), qi+1) ∈ ∆. Additionally, we say that the partial run ρ is from state p to

state q if p1 = p and pn+1 = q. In other words, partial runs are almost equal to runs, except

they can start and end at any states p and q, respectively.

For the algorithm, we use the set of all Q×Q matrices where entry M [p, q] is a node

in V for every p, q ∈ Q. Each node M [p, q] represents all annotations of partial runs

from state p to state q, which can be enumerated with output-linear delay by Theorem 5.3.

Further, M [p, q] = ⊥ represents that there is no run, and M [p, q] = ε that there is a single

run without outputs (i.e., a run that produces the ε output).

To combine matrices over D-nodes, we define two operations. The first operation is

the matrix multiplication over the semiring (2(Ω×Z)∗ ,∪, ·, ∅, {ε}) but represented over D.

Formally, let Q = {q1, . . . , qm} with m = |Q|. Then, for two m × m matrices M1 and

M2, we define M1 ⊗M2 such that for every p, q ∈ Q:

(M1 ⊗M2)[p, q] := unionmi=1

(
prod

(
M1[p, qi],M2[qi, q]

))
where unionmi=1Ei := union(. . . union(union(E1, E2), E3) . . . , Em). That is, the node

(M1 ⊗M2)[p, q] represents the set
⋃m
i=1

(
JDK(M1[p, qi]) · JDK(M2[qi, q])

)
.

The second operation for matrices is the extension of the shift operation. Formally,

shift(M,k)[p, q] := shift(M [p, q], k) for a matrix M , k ∈ Z, and p, q ∈ Q. Since each

operation over D takes constant time, overall multiplying M1 with M2 takes timeO(|Q|3)

and shifting M by k takes time O(|Q|2).

167

Algorithm 5 The enumeration algorithm of an unambiguous AnnA A =
(Q,Σ,Ω,∆, I, F) over an SLP S = (N,Σ, R, S0).

1: procedure EVALUATION(A, S)
2: Initialize D as an empty Shift-ECS
3: NONTERMINAL(S0)
4: v ← ⊥
5: for each p ∈ I, q ∈ F do
6: v ← union(v,MS0 [p, q])

7: ENUMERATE(v,D)

8: procedure TERMINAL(a)
9: Ma ← {[p, q]→ ⊥ | p, q ∈ Q}

10: for each (p, (a, o^), q) ∈ ∆ do
11: Ma[p, q] ←

union(Ma[p, q], add(o^))

12: for each (p, a, q) ∈ ∆ do
13: Ma[p, q]← union(Ma[p, q], ε)

14: lena ← 1

15: procedure NONTERMINAL(X)
16: MX ← {[p, q]→ ⊥ | p, q ∈ Q, p 6=

q}∪
{[p, q]→ ε | p, q ∈ Q, p =

q}
17: lenX ← 0
18: for i = 1 to |R(X)| do
19: Y ← R(X)[i]
20: if MY is not defined then
21: if Y ∈ Σ then
22: TERMINAL(Y)
23: else
24: NONTERMINAL(Y)

25: MX ←MX ⊗ shift(MY , lenX)
26: lenX ← lenX + lenY

The algorithm. We present the evaluation algorithm for the SLPENUM problem in Algo-

rithm 5. As expected, the main procedure EVALUATION receives as input an unambiguous

annotated automatonA = (Q,Σ,Ω,∆, I, F) and an SLP S = (N,Σ, R, S0), and enumer-

ates all outputs in JAK(doc(S)). To simplify the notation, in Algorithm 5 we assume that

A and S are globally defined, and we can access them in any subprocedure. Similarly, we

use a Shift-ECS D, and matrix MX and integer lenX for every X ∈ N ∪ Σ, which can

globally be accessed at any place as well.

The main purpose of the algorithm is to compute MX and lenX recursively. On one

hand, MX is a Q × Q matrix where each node entry MX [p, q] represents all outputs of

partial runs from p to q. On the other hand, lenX is the length of the string R∗(X)

(i.e., the string produced from X). Both MX and lenX start undefined, and we compute

them recursively, beginning from the non-terminal symbol S0 and by calling the method

NONTERMINAL(S0) (line 3). After MS0 was computed, we can retrieve the set JAK(S)

by taking the union of all partial run’s outputs from an initial state p ∈ I to a state q ∈ F ,

and storing it in node v (lines 4-6). Finally, we can enumerate JAK(S) by enumerating all

outputs represented by v (line 7).

168

The workhorses of the evaluation algorithm are procedures NONTERMINAL and TER-

MINAL in Algorithm 5. The former computes matrices MX recursively whereas the latter

is in charge of the base case Ma for a terminal a ∈ Σ. For computing the base case, we

can start with Ma with all entries equal to the empty node⊥ (line 9). Then if there exists a

read-annotate transition (p, (a, o^), q) ∈ ∆, we add an output node o^toMa[p, q], by making

the union between the current node at Ma[p, q] with the node add(o^) (line 11). Also, if a

read transition (p, a, q) ∈ ∆ exists, we do the same but with the ε-node (line 13). Finally,

we set the length of lena to 1, and we have covered the base case.

For the recursive case (i.e., procedure NONTERMINAL(X)), we start with a sort of

“identity matrix”MX where all entries are set up to the empty-node except the ones where

p = q that are set up to the ε-node, and the value lenX = 0 (lines 16-17). Then we iterate

sequentially over each symbol Y ofR(X), where we useR(X)[i] to denote the i-th symbol

of R(X) (lines 18-19). If MY is not defined, then we recursively compute TERMINAL(Y)

or NONTERMINAL(Y) depending on whether Y is in Σ or not, respectively (lines 20-24).

The matrix MY is memorized (by having the check in line 20 to see if it is defined or not)

so we need to compute it at most once. After we have retrieved MY , we can compute

all outputs for R(X)[1] . . . R(X)[i] by multiplying the current version of MX (i.e., the

outputs of R(X)[1] . . . R(X)[i − 1]), with the matrix MY shifted by the current length

lenX (line 25). Finally, we update the current length of X by adding lenY (line 26).

Theorem 5.4. Algorithm 5 enumerates the set JAK(S) correctly for every unambigu-

ous AnnA A and every SLP-compressed document S, with output-linear delay and after a

preprocessing phase that takes time O(|A|+ |S| × |Q|3).

PROOF. The correctness of the algorithm will follow after proving that for each MX ,

for anX ∈ Σ∪N that is reachable from S0, the set JDK(MX [p, q]) contains the annotations

of all partial runs of A over doc(X) that start on p and end on q. First, let X = a ∈ Σ.

This case can be quickly verified by inspecting the procedure TERMINAL(a), as for each

index, the set JDK(Ma[p, q]) contains ε, and the annotations o^ in the pair (o^, 1) whenever

they correspond. Now, letX be a non-terminal and letR(X) = α. Let α′Y be a nonempty

169

prefix of α where Y is its last symbol. Note that for the empty string, a run of size one

ρ = q is always valid for any q ∈ Q, so we can safely consider that the setMX , as declared

in line 16 stores the correct nodes for the runs that read the empty string, and start and end

on the same node. The proof will follow inductively by proving that MX , at the iteration

i = |α′Y | of line 18, satisfies that JDK(MX [p, q]) contains all partial annotations from a

run of A over doc(α′Y) that starts on p and ends on q; that is, after assuming that in line

24, the set JDK(MX [p, q]) contained all partial annotations from a run of A over doc(α)

that starts on p and ends on q. We have assumed that the nodes in MY store all annotations

properly, so the inductive hypothesis is proven from the definition of the operator ⊗, as

any possible annotation that should be added can be described by two partial runs, one that

starts on p, reads doc(α) and ends on q′, and a second that starts on q′, reads doc(Y) and

ends on q, so it is properly added to the JDK(MX [p, q]) as the operator⊗ does consider this

q′. Plus, it can be seen that the positions that were obtained from MY are properly shifted

when added to MX by assuming the lenX variable is storing the correct length. From this

reasoning, we can conclude that the set JDK(MX [p, q]) contains exactly the annotations

from JAK(doc(α)).

To see that the operators add, union, prod and shift are done following all assumptions,

we would like to note that union and prod are always called by respecting the duplicate-

free property. However, this is not necessarily true, at least for the union case since A is

allowed to be ambiguous in partial runs that do not form part of an accepting run. For

simplicity, all statements in the rest of the proof are assumed to be said with respect to

indices MX [p, q] which are reached when building an output string. In other words, that

there exists an accepting run ρ = p1
b1−→ . . .

bn−→ pn+1 such that p = p`, q = pr with ` ≤ r,

and a1 . . . a`−1Xar . . . an is reachable from S0 by following production rules in R. In the

case of prod, proving the duplicate-free property is straightforward, since it is only done

in line 25, and the positions on the left side (i.e., the ones taken from MX) are all less

or equal than the value lenX has at that point, so by shifting the values from MY by this

amount, the sets from either side do not contain any annotation in common. In the case

of union, one can check by inspection that in lines 11 and 13, this is done properly, since

170

transitions do not appear more than once, and one can check that in line 25, if any of the

calls to union done inside the ⊗ operation is done with duplicates, this implies that there

is some annotation that appears in two distinct calls, since each of the union calls is done

over a different index in the matrices MY and MX , contradicting the assumption that A

is unambiguous. Therefore, we conclude that the operators add, union, prod and shift are

done properly, and the statement of the theorem follows.

Regarding performance, the main procedure calls NONTERMINAL or TERMINAL at

most once for every symbol. After making all calls to TERMINAL, each transition in ∆ is

seen exactly once, and NONTERMINAL takes time at most O(|R(X)| × |Q|3) not taking

into account the calls inside. Overall, the preprocessing time is O(|A|+ |S| × |Q|3). �

We want to finish by noticing that, contrary to (Schmid & Schweikardt, 2021), our

evaluation algorithm does not need to modify the grammar S into Chomsky’s normal

form (CNF) since we can evaluate A over S directly. Although passing S into CNF can

be done in linear time over S (Schmid & Schweikardt, 2021), this step can incur an extra

cost, which we can avoid in our approach.

5.4. Applications in regular spanners

It was already shown in Chapter 4 that working with annotations directly and then

providing a reduction from a spanner query to an annotation query is sometimes more

manageable. In this section we will do just that: starting from a document-regular span-

ner pair (d,M), we will show how to build a document-annotated automaton pair (d′,A)

such thatM(d) = JAK(d′). Although people have studied various models of regular span-

ners in the literature, we will focus here on sequential variable-set automata (VA) (Fagin

et al., 2015) and sequential extended VA (Florenzano et al., 2020). The latter is essen-

tially the model that the work of Schmid and Schweikardt used in their results (Schmid &

Schweikardt, 2021). We present the models in this order, but we present first the reduction

from the latter as it can be done into AnnA directly. In the second half of the section we

171

reduce the former to succinctly annotated automata, an extension of AnnA that allows out-

put symbols to be stored concisely. These reductions imply constant-delay enumeration

for the spanner tasks.

Variable-set automata. A variable-set automaton (VA for short) is a tuple given by

A = (Q,Σ,X ,∆, I, F) where Q is a set of states, I, F ⊆ Q, and ∆ consists of read

transitions (p, a, q) ∈ Q × Σ × Q and variable transitions (p, `x, q) or (p,ax, q) where

p, q ∈ Q and x ∈ X . The symbols `x and ax are referred to as variable markers of

x, where `x is opening and ax is closing. Given a document d = a1 . . . an ∈ Σ∗ a

configuration of A is a pair (q, i) where q ∈ Q and i ∈ [1, n+ 1]. A run ρ of A over d is a

sequence:

ρ := (q1, i1)
σ1−→ (q2, i2)

σ2−→ · · · σm−→ (qm+1, im+1)

where i1 = 1, im+1 = n + 1, and for each j ∈ [1,m], (qj, σj, qj+1) ∈ ∆ and either (1)

σj = aij and ij+1 = ij + 1, or (2) σj ∈ {`x,ax| x ∈ X} and ij+1 = ij . We say that

ρ is accepting if qm+1 ∈ F and that it is valid if variables are non-repeating, and they

are opened and closed correctly. If ρ is accepting and valid, we define the mapping µρ

which maps x ∈ X to the span [u, v〉 if, and only if, there exist j, k ∈ [1,m] such that

ij = u, ik = v, and σj = `x and σk =ax. We say that A is sequential if every accepting

run is also valid. Finally, define the document spanner JAK as the function:

JAK(d) = {µρ | ρ is an accepting and valid run of A over d}.

Like in AnnAs, we sayA is unambiguous if for each mapping µ ∈ JAK(d) there is exactly

one accepting run ρ of A over d such that µρ = µ.

Extended VA. An extended variable-set automaton (or eVA for short) is a tuple A =

(Q,Σ,X ,∆, I, F) where Q, I, F are defined as in VA, ∆ is a set consisting of letter tran-

sitions (p, a, q) where a ∈ Σ and p, q ∈ Q or extended variable transitions (p, S, q) where

S ⊆ {`x,ax| x ∈ X} and S is non-empty; and F ⊆ Q. A run ρ over a document

172

d = a1 . . . an is a sequence:

ρ = q1
S1−→ p1

a1−→ q2
S2−→ p2

a2−→ · · · an−→ qn+1
Sn+1−−−→ pn+1

where each Si is a (possibly empty) set of markers, for each i ∈ [1, n], (pi, ai, qi+1) ∈ ∆,

and for each i ∈ [1, n+ 1], if Si is not empty, then (qi, Si, pi) ∈ ∆, and pi = qi, otherwise.

We say that a run is accepting if pn+1 ∈ F . Also, we say that a run ρ is valid if variables

are opened and closed in a correct manner: every marker `x andax must appear at most

once among the sets S1 . . . Sn+1; if one of them appears, the other does as well; and if

`x∈ Si andax∈ Sj then it holds that i ≤ j. For a valid run ρ, we define the mapping µρ

that maps x to [i, j〉 iff `x∈ Si andax∈ Sj . The spanner JAK is defined identically as for

VA. The definitions of sequential and unambigous eVA are the same as well.

To motivate the reduction from sequential eVA to annotated automata, consider a doc-

ument d = aab, and a run over d of some (unspecified) eVA with variable setX = {x, y}:

ρ = q1
∅−→ q1

a−→ q2
{`x,ax,`y}−−−−−−→ p2

a−→ q3
∅−→ q3

b−→ q4
{ay}−−→ p4

This run defines the mapping µwhich assigns µ(x) = [2, 2〉 and µ(y) = [2, 4〉. To translate

this run to the annotated automata model, first we append an end-of-document character

to d, and then “push” the marker sets one transition to the right. We then obtain a possible

run of an annotated automaton with output set Ω = 2{`
x,ax|x∈X} over the document d′ =

aab#:

ρ′ = q′1
a−→ q′2

(a,{`x,ax,`y})−−−−−−−−→ q′3
b−→ q′4

(#,{ay})−−−−→ q′5

The annotation of this run would then be (2, { `x,ax, `y})(4, {ay}), from where the map-

ping µ can be extracted directly. The reduction from extended VA into annotated automata

operates in a similar fashion: the read transitions are kept, and for each pair of transitions

(p, S, q), (q, a, r) in the former, a transition (p, (a, S), r) is added to the latter.

The equivalence between mappings and annotations is formally defined as follows:

for some document d, a mapping µ from X to spans in d is equivalent to an annotation

173

w = (S1, i1) . . . (Sm, im) if, and only if, for every j ∈ [1,m]:

Sj = { `x| µ(x) = [ij, k〉} ∪ {ax| µ(x) = [k, ij〉}.

PROPOSITION 5.2. For any unambiguous sequential extended VA A with state set Q

and transition set ∆, there exists an AnnAA′ withO(|Q|× |∆|) transitions such that each

mapping µ ∈ JAK(d) is equivalent to some unique w ∈ JA′K(d#) and vice versa, for every

document d.

PROOF. Let A = (Q,Σ,X ,∆, I, F) be an unambiguous sequential eVA. We build an

annotated automaton A′ = (Q′,Σ ∪ {#},Ω,∆′, I, F ′) as follows. Define Q′ = Q ∪ {q∗}

for some fresh state q∗, and F ′ = {q∗}. Further, define Ω = 2{`
x,ax|x∈X} and:

∆′ = {(p, a, q) | a ∈ Σ and (p, a, q) ∈ ∆} ∪

{(p, (a, S), q) | (p, S, q′), (q′, a, q) ∈ ∆ for some q′ ∈ Q} ∪

{(p,#, q∗) | p ∈ F} ∪

{(p, (#, S), q∗) | (p, S, q) ∈ ∆ for some q ∈ F}.

To see the equivalence between A and A′, let d = a1 . . . an be a document over Σ, and let

ρ be an accepting run of A over d of the form:

ρ = q1
S1−→ p1

a1−→ q2
S2−→ p2

a2−→ · · · an−→ qn+1
Sn+1−−−→ pn+1

We define ρ′ as the following sequence:

ρ′ = q1
b1−→ q2

b2−→ · · · bn−→ qn+1
bn+1−−→ q∗

where bi = (ai, Si) if Si is not empty, and bi = ai otherwise, for each i ≤ n. We define

bn+1 = (#, Sn+1) if Sn+1 is not empty, and bn+1 = # otherwise. Since A is sequential, ρ

is a valid run which defines a mapping µρ ∈ JAK(d). We can straightforwardly check that

µρ is equivalent to ann(ρ′). It can also be seen directly from the construction that ρ′ is a

174

run from A′ over d#, and since ρ′ is uniquely defined from ρ, we conclude that for every

document d each µ ∈ JAK(d) is equivalent to some unique w ∈ JA′K(d#).

To see the equivalence on the opposite direction, consider an accepting run ρ′ of A′

over d# as above, where each bi, for i ∈ [1, n], might be either ai or a pair (ai, S). From

the construction, it can be seen that if bi = ai, there exists a transition (qi, ai, qi+1) ∈ ∆.

Instead, if bi = (ai, S), there exist transitions (qi, S, q
′), (q′, ai, qi+1) ∈ ∆ for some q′ ∈ Q.

Also, if bn+1 = # then qn+1 ∈ F , and if bn+1 = (#, S) there exists (qn+1, S, q
′) ∈ ∆ for

some q′ ∈ F . We define ρ as a run of A over d built by replacing each transition in

ρ′ by the corresponding transition(s) in A. We note first that this run is accepting and

valid, and since A is unambiguous, ρ must be uniquely defined. Indeed, when replacing

(qi, (ai, S), qi+1), we know there exist transitions (qi, S, q
′) and (q′, ai, qi+1) in ∆. Fur-

thermore, this q′ must be unique, otherwise we could define a different accepting run that

defines the same mapping. We see that ann(ρ′) is equivalent to µρ, so we conclude that

each annotation w ∈ JAK(d) is equivalent to some unique mapping µ ∈ JAK(d).

To see that A′ is unambiguous, consider towards a contradiction two different accept-

ing runs ρ′1 and ρ′2 that retrieves the same annotation. Let i be such that the i-th states in ρ′1
and ρ′2 are different, and note it holds that 1 ≤ i ≤ n + 1 since A′ has a unique final state

q∗. By the previous discussion, we can build runs ρ1 and ρ2 of A over d that also define

the same mapping. Furthermore, they differ at index 2i− 1 (the index at which qi is in the

ρ written above), which is not possible since A is unambiguous. �

Combining Proposition 5.2 and Theorem 5.1, we get a constant-delay algorithm for

evaluating an unambiguous sequential extended VA over a document, proving the exten-

sion of the result in (Schmid & Schweikardt, 2021). Notice that the result in (Schmid &

Schweikardt, 2021) is for deterministic VA, where here we generalize this result for the

unambiguous case, plus the constant delay.

175

Succinctly annotated automata. For the algorithmic result of sequential (non-extended)

VA, we need an extension to annotated automata which features succinct representations

of sets of annotations.

A succinct enumerable representation scheme (SERS) is a tuple:

S = (R,Ω, | · |,L, E)

made of an infinite set of representations R, and an infinite set of annotations Ω. It in-

cludes a function | · | that indicates, for each r ∈ R and o^ ∈ Ω, the sizes |r| and | o^|,

i.e., the number of units needed to store r and o^ in the underlying computational model

(e.g., the RAM model). The function L maps each element r ∈ R to some finite non-

empty set L(r) ⊆ Ω. Lastly, there is an algorithm E which enumerates the set L(r) with

output-linear delay for every r ∈ R. Intuitively, a SERS provides us with representa-

tions to encode sets of annotations. Moreover, there is the promise of the enumeration

algorithm E where we can recover all the annotations with output-linear delay. This repre-

sentation scheme allows us to generalize the notion of annotated automaton for encoding

an extensive set of annotations in the transitions.

Fix a SERS S = (R,Ω, | · |,L, E). A Succinctly Annotated Automaton over S (sAnnA

for short) is a tupleA = (Q,Σ,Ω,∆, I, F) where all sets are defined like in AnnA, except

that in ∆ read-annotate transitions are of the form (p, (a, r), q) ∈ Q× (Σ×R)×Q. That

is, transitions are now annotated by a representation r which encodes sets of annotations

in Ω. For a read-annotate transition δ = (p, (a, r), q), we define its size as |δ| = |r|+1 and

for a read transition δ = (p, a, q) we define its size as |δ| = 1. A run ρ over a document

d = a1 . . . an is also defined as a sequence:

ρ := q1
b1−→ q2

b2−→ . . .
bn−→ qn+1

with the same specifications as in AnnA with the difference that it either holds that bi = ai,

or bi = (ai, r) for some representation r. We now define the set of annotations of ρ as:

ann(ρ) = ann(b1, 1) · . . . · ann(bn, n) such that ann(bi, i) = {(o^, i) | o^ ∈ L(r)} if

176

bi = (a, r), and ann(bi, i) = {ε} otherwise. The set JAK(d) is defined as the union of sets

ann(ρ) for all accepting runs ρ of A over d. We say that A is unambiguous if for every

document d and every annotation w ∈ JAK(d) there exists only one accepting run ρ of A

over d such that w ∈ ann(ρ). Finally, we define the size of ∆ as |∆| =
∑

δ∈∆ |δ|, and the

size of A as |A| = |Q|+ |∆|.

This annotated automata extension allows for representing output sets more compactly.

Moreover, given that we can enumerate the set of annotations with output-linear delay, we

can compose it with Theorem 5.1 to get an output-linear delay algorithm for the whole set.

Theorem 5.5. Fix a SERS S. There exists an enumeration algorithm that, given an

unambiguous sAnnAA over S and an SLP S, it runs in |A|3×|S|-preprocessing time and

output-linear delay for enumerating JAK(doc(S)).

For this proof, we will use an extension of Shift-ECSs called succinct Shift-ECSs.

A succinct Shift-ECSs is a tuple D̃ = (S, V, `, r, λ,⊥, ε), similar to Shift-ECS with the

difference that the output set has been replaced by representations from a SERS S. The

set of strings associated to a node v ∈ D̃ is defined as follows: If λ(v) = r ∈ R, where

R is the set of representations in S, then JD̃K(v) = L(r) × {1}. The rest of the sets

JD̃K(v) for union, product, and shift nodes v remain unchanged, and so are the notions of

duplicate-free, k-bounded and ε-safe nodes, along with the operations for add, prod, union

and shift. We will extend Proposition 5.3 for this data structure as follows:

PROPOSITION 5.3. The operations prod, union and shift over succinct Shift-ECSs ex-

tended with empty- and ε-nodes take constant time, and the operation add with a represen-

tation r as argument takes time O(|r|). Furthermore, if we start from an empty succinct

Shift-ECS D and apply add, prod, union, and shift over ε-safe nodes, the resulting node v′

is always an ε-safe node, and the set JDK(v) can be enumerated with output-linear delay

without preprocessing for every node v.

177

PROOF. For this proof, we need to be a bit more specific regarding the enumeration

algorithm E of an SERS S. Precisely, we assume that E has an associated function yield

and a constant c, and its procedure is to receive r and then allow up to |L(r)| calls to

yield. Each of these calls produces a different annotation o^ ∈ L(r) and takes time at

most c · (| o^| + 1) for some fix constant c. Each of these annotations carries a flag end

which is true if, and only if, it is the last output of the set. We also assume that a sequence

of |L(r)| calls to yield might happen again with the same time bounds after the last call

had set end to true.

We start this proof by re-stating that every definition in the Shift-ECS data structure

is unchanged in its succinct version. The only difference is the definition of JD̃K(v) for a

bottom node v ∈ D̃.

First, we shall prove a version of Proposition 5.1 in this model, namely, that if a suc-

cinct Shift-ECS D̃ is duplicate-free and k-bounded, then the set JD̃K(v) can be enumerated

with output-linear delay for every v ∈ D. We do this by adapting the proof of Proposi-

tion 5.1 to handle this new type of bottom node. Let S = (R,Ω, | · |,L, E) be the SERS

associated to D̃ and let c′ be the constant associated to E .

The main idea is to modify iterator τΛ from Algorithm 4 so that it stores, besides a

value u and a flag hasnext, an annotation o^. The iterator fully makes use of the fact that

the yield procedure from E retreives an output, evolves the internal iterator so that the

next call produces the next output, and also says at each point if the current output was the

last one from the set or not. The overall strategy is then to call yield in NEXT, store the

retrieved output in o^, and in PRINT, print whatever is currently stored in o^. More precisely,

the CREATE procedure initializes E so that the next time it calls yield it prints the first

output in the set L(r), and initializes hasnext to true. NEXT first checks if hasnext is set

to true, and returns false if it is not the case; otherwise it calls yield, stores the output in

o^, and returns true. If the output of yield is end, then it set hasnext to false and returns

false. Finally, PRINT with input s simply prints the pair (o^, s + 1). It can be seen that the

178

methods follow the necessary specifications to ensure that the correctness of the algorithm

still holds for this version of the data structure.

To show the time bounds, we bring attention to the fact that the only difference in the

algorithm time-wise is the time spent printing each pair (o^, i), as now this takes c·(| o^|+1).

Since Algorithm 4 was proven to have delay O(k · (|w| + |w′|)) to write output w′ after

writingw for non-succinct Shift-ECS, we state that the same delay holds for this version of

the algorithm since the time added isO(|w|). This implies output-linear delay by following

the same reasoning than the proof of Proposition 5.1.

The rest of the proof pertains the operations add, prod, union and shift. It is not hard to

see that they can be kept unchanged and maintain all the conditions in the statement, with

the sole exception of add(r), which now adds a representation r to the structure and takes

|r| time. This concludes the proof. �

PROOF OF THEOREM 5.5. The algorithm that we give to prove the statement is ex-

actly Algorithm 5 line-by-line, with the sole exception of lines 10-11, which now read:

for each (p, (a, r), q) ∈ ∆ do

Ma[p, q]← union(Ma[p, q], add(r))

The rest of the proof follows from the reasoning of the proof of Theorem 5.4, and by

noticing that the definition of the set JD̃K(v) = L(r) × {1} satisfies what is expected for

an index Ma[p, q]. That is, that for every partial run ρ of A over a that starts on p and end

on q, all annotations from the set ann(ρ) are included. The fact that the operations are

done duplicate-free also follows from the fact that A is assumed to be unambiguous. �

The purpose of sAnnA is to encode sequential VA succinctly. Indeed, as shown

in (Florenzano et al., 2020), representing sequential VA by extended VA has an exponen-

tial blow-up in the number of variables that cannot be avoided. Therefore, the reduction

from Proposition 5.2 cannot work directly. Instead, we can use a Succinctly Annotated

179

Automaton over some specific SERS to translate every sequential VA into the annotation

world efficiently.

PROPOSITION 5.4. There exists an SERS S such that for any unambiguous sequential

VA A with state set Q and transition set ∆ there exists a sAnnA A over S of size O(|Q| ×

|∆|) such that for every document d, each mapping µ ∈ JAK(d) is equivalent to some

unique w ∈ JAK(d#) and vice versa. Furthermore, the number of states inA is inO(|Q|).

PROOF. The SERS that we will consider are Enumerable Compact Sets as they were

presented in Chapter3, defined over the output set Ω = { `x,ax| x ∈ X}, with the sole

difference that the sets of outputs stored in a node no longer contain strings in Ω∗, but

subsets of Ω instead. This difference is merely technical and has no influence in the time

bounds of an ECS, as long as it is guaranteed to be duplicate-free (called unambiguous in

Chapter 3).

First we assume that all transitions inA are reachable from some q ∈ I , and all of them

reach an accepting state. We know that in the VA A, the graph induced by the variable

transitions is a DAG, otherwise it would not be sequential. We start with an empty ECS D

and define a matrix K[p, q], that first starts with the empty node in each index except the

indices in the diagonal (those that satisfy p = q), which have the ε node. The idea is that

at the end of this algorithm, LD(K[p, q]) contains all sets of variable markers that can be

seen in a path from p to q that does not contain a letter transition. We build this matrix by

iterating over the variable transitions in A following some topological order of the DAG,

starting from a root. For each variable transition (p, V, q), let u ← add(V) and for each

p′ ∈ Q that can reach p in the DAG assign K[p′, q] ← union(K[p′, q], prod(K[p′, p], u)).

The time of this algorithm is |Q| × |A|.

After doing this, we perform a construction analogous to the one done in Proposi-

tion 5.2, in which we replace the extended variable transitions (p, S, q) by transitions

(p, r, q) where r = K[p, q], which happens every time K[p, q] is not the empty node.

The proof follows from this result as well. �

180

By Proposition 5.4 and Theorem 5.5 we prove the extension of the output-linear delay

algorithm for unambiguous sequential VA.

5.5. Constant-delay preserving complex document editing

In this section, we show that the results obtained by Schmid and Schweikardt (Schmid

& Schweikardt, 2022) regarding enumeration over document databases and complex doc-

ument editing still hold, maintaining the same time bounds in doing these edits, but allow-

ing output-linear delay. We also include a refinement of the result for whenever the edits

needed are limited to the concatenation of two documents. To be precise, we will give an

overview of the following theorem.

Theorem 5.6. LetD = {d1, . . . , dm} be a document database that is represented by an

SLP S in normal form. LetA1, . . . ,Ak be unambiguous sequential variable-set automata.

When given the query data structures for S and A1, . . . ,Ak, and a CDE-expression ϕ

over D, we can construct an extension S ′ of S and new query data structures for S ′ and

A1, . . . ,Ak, and a new non-terminal Ã of S ′, such that doc(Ã) = eval(ϕ).

• If ϕ contains operations other than concat, we require S to be strongly bal-

anced. Then, S ′ is also strongly balanced, and this construction can be done

O(k · |ϕ| · log |d∗|) time in data-complexity where |d∗| = |maxϕ(D)|.

• If ϕ only contains concat, then this can be done in O(k · |ϕ|) time in data-

complexity.

Afterwards, upon input of any d ∈ docs(S ′) (represented by a non-terminal of S ′) and

any i ∈ [1,m], the set JAiK(d) can be enumerated with constant-delay.

The version of this result shown in (Schmid & Schweikardt, 2022) had extended VA

instead of VA, and logarithmic delay instead of constant-delay. We dedicate the rest of this

section to define the concepts we have not yet introduced in Theorem 5.6, and show how

the techniques presented in (Schmid & Schweikardt, 2022) allow us to obtain this result.

181

Normal form, balanced and rootless SLPs. We define a rootless SLP as a triple S =

(N,Σ, R), where N is a set of non-terminals, Σ is the set of terminals, and R is a set

of rules. Rootless SLPs are defined as SLPs with the difference that there is no starting

symbol, and thus doc(S) is not defined. Instead, we define doc(A) for each A ∈ N as

doc(A) = R∗(A). We say that S is in Chomsky normal form (or just normal form) if every

rule in R has the form A → a or A → BC, where a ∈ Σ and A,B,C ∈ N . Also, we

say that S is strongly balanced if for each rule A → BC, the value ord(B) − ord(C) is

either -1, 0 or 1, where ord(X) is the maximum distance from X to any terminal in the

derivation tree.

Document Databases. A document database over Σ is a finite collectionD = {d1, . . . , dm}

of documents over Σ. Document databases are represented by a rootless SLP as follows.

For an SLP S = (N,Σ, R), let docs(S) = {doc(A) | A ∈ N} be the set of documents

represented by S. The rootless SLP S is a representation for a document database D if

D ⊆ docs(S).

For a document database D, it is assumed that a rootless SLP S that represents D is in

normal form and, for the effects of the first bullet point of Theorem 5.6, strongly balanced.

It is also assumed that for each nonterminal A for which its rule has the form A → BC,

the values | doc(A)|, ord(A) and nonterminals B and C are accessible in constant time.

All these values can be precomputed with a linear-time pass over S. We call S along with

constant-time access to these values the basic data structure for S.

Complex Document Editing. As in (Schmid & Schweikardt, 2022), given a document

database D = {d1, . . . , dm} our goal is to create new documents by a sequence of text-

editing operations. Here we introduce the notion of a CDE-expression over D, which is

defined by the following syntax:

ϕ := d`, ` ∈ [1,m] | concat(ϕ, ϕ) | extract(ϕ, i, j) | delete(ϕ, i, j) |

insert(ϕ, ϕ, k) | copy(ϕ, i, j, k)

182

where the values i, j are valid positions, and k is a valid gap. The semantics of these

operations, called basic operations, works as follows:

concat(d, d′) = d·d′ insert(d, d′, k) = d[1, k〉·d′ ·d[k, |d|+ 1〉

extract(d, i, j) = d[i, j + 1〉 delete(d, i, j) = d[1, i〉·d[j + 1, |d|+ 1〉

copy(d, i, j, k) = insert(d, d[i, j + 1〉, k)

We write eval(ϕ) for the document obtained by evaluating ϕ on D according to these se-

mantics. For an operation extract(ϕ, i, j), delete(ϕ, i, j), insert(ϕ, ψ, k), or

copy(ϕ, i, j, k), i, j are valid positions if i, j ∈ [1, |eval(ϕ)|], and k is a valid gap if

k ∈ [1, |eval(ϕ)| + 1]. We define |ϕ| as the number of basic operations in ϕ. For adding

these new documents in the database we will use the notion of extending a rootless SLP. A

rootless SLP S ′ = (N ′,Σ, R′) is called an extension of S if S ′ is in normal form, N ⊆ N ′,

and R′(A) = R(A) for every A ∈ N . In this context, we call N ′ \ N the set of new

non-terminals. We define the maximum intermediate document size |maxϕ(D)| induced

by a CDE-expression ϕ on a document database D as the maximum size of eval(ψ) for

any sub-expression ψ of ϕ (i.e., any substring ψ of ϕ that matches the CDE syntax).

Having defined most of the concepts mentioned in Theorem 5.6, we can re-state the

following Theorem from (Schmid & Schweikardt, 2022), which will be instrumental in

the final proof.

Theorem 5.7 ((Theorem 4.3 in (Schmid & Schweikardt, 2022))). LetD be a document

database represented by a strongly balanced rootless SLP S in normal form. When given

the basic data structure for S and a CDE-expression ϕ overD, we can construct a strongly

balanced extension S ′ of S, along with its basic data structure, and a non-terminal Ã of

S ′ such that doc(Ã) = eval(ϕ). This construction takes time O
(
|ϕ| · log(|maxϕ(D)|)

)
.

In particular, the number of new non-terminals |N ′ \N | is in O
(
|ϕ| · log(|maxϕ(D)|)

)
.

For the second bullet point in Theorem 5.6, we use the following observation, which

comes from the fact that applying concat to an SLP amounts to adding a single production.

183

OBSERVATION 5.1. Let D be a document database represented by a rootless SLP S in

normal form. Given the basic data structure for S and a CDE-expression ϕ over D which

only mentions concat, we can construct an extension S ′ of S, along with its basic data

structure, and a nonterminal Ã of S ′ such that doc(Ã) = eval(ϕ). This construction takes

time O(|ϕ|). In particular, the number of new non-terminals |N ′ \N | is in O(|ϕ|).

The query data structure. The structure we will use is the one produced in Theorem 5.5.

This structure is built by an algorithm that receives an SLP S, an unambiguous sAnnA A,

and produces a succinct Shift-ECS D indexed by the matrices MA, for each non-terminal

A in S. These matrices store nodes v = MA[p, q] such that JDK(v) contains all partial an-

notations from a path ofAwhich starts p, ends in q, and reads the string doc(A). Note that,

although the algorithm receives a “rooted” SLP, it can be adapted quite easily to rootless

SLPs by adding a node vA for each non-terminalA in S, built as vA = unionq∈F (MA[q0, q])

(the same construction that was done for S0 in the algorithm).

We define the query data structure for S and A as the mentioned succinct Shift-ECS

along with constant-time access to every index MA[p, q] for states p and q and non-

terminal A. Note that for each A it holds that JDK(vA) = JAK(doc(A)). In particular,

if S represents a document database D, then for each d ∈ D there is a v in D for which

JDK(v) = JAK(d). Recall that for every node v ∈ D, the set JDK(v) can be enumerated

with output-linear delay.

Lemma 5.2. Let S be an SLP in normal form and an extension S ′ of S with new non-

terminals Ñ = N ′ \ N . Also, let A be an unambiguous sAnnA and assume we are given

the query data structure for S andA, and the basic data structure for S ′. We can construct

the query data structure for S ′ and A in O(|A|3 · |Ñ |) time.

PROOF. Let D be the succinct Shift-ECS associated to the query data structure for S

andA and let R̃ = R′\R be the set of new rules in S ′. Consider the DAG that is induced by

this set. We can go over these new rules Ã→ BC in a bottom-up fashion, starting from the

ones whereB,C ∈ N , and define the nodesMÃ[p, q] = (MB⊗shift(MC , | doc(B)|))[p, q]

184

for each p, q ∈ Q. Then, we build the nodes vÃ for each new non-terminal Ã as defined.

The new nodes are created by application of the Shift-ECS operations add, union, prod

and shift which create the succinct Shift-ECS D′ that defines the query data structure for

S ′ and A. The procedure takes O(|Q|3 · |Ñ |) time. �

We finally have all the machinery to prove Theorem 5.6, extending the results shown

in (Schmid & Schweikardt, 2022) for sequential VA and with output-linear delay.

Proof of Theorem 5.6. Let us first reduce the variable-set automataA1, . . .Ak to sAnnAs

A′1, . . . ,A′k using the construction of Proposition 5.4. Note, however, that this reduction

requires the input document to be modified as well. This can be solved by adding a non-

terminal A# for each A ∈ N , and a rule A# → AH , where H is a new non-terminal with

the rule H → #. Then, in the query data structure for S and A′, the nodes vA are defined

over the matricesMA# instead. That way, when the user chooses a document d ∈ docs(S)

and a variable set automataAi, she can be given the set JA′iK(d#) as output. Note that this

has no influence in the time bounds given for the edit so far, except for a factor that is

linear in |Ñ |.

We can see now that the result follows due to Theorem 5.7, Observation 5.1, and

Lemma 5.2. The fact that for each d ∈ docs(S ′) the set JAK(d) can be enumerated

with output-linear delay follows from the definition of the query data structure for S ′ and

A. �

185

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we developed a framework based on MSO to handle enumeration queries

– called the Annotators framework. As a proof of concept, we used it to build three

different models that perform output-linear enumeration: (1) MSO queries over nested

documents, (2) context-free grammar queries over strings, and (3) regular queries over

SLP-compressed documents. These results are given with several extensions: (1) allows

one-pass-streaming computation over the document, (2) is given for three different frag-

ments of context-free grammars, each with tight complexity bounds, and (3) are shown

to be compliant with other useful frameworks that work on compressed documents. Fur-

thermore, the work improves on other known results in the literature, especially from the

perspective of document spanners.

We attribute these achievements to two main factors:

The use of an intuitive model for the query instances, namely, the Annotator frame-

work. While document spanners have been studied extensively and with reasonable suc-

cess, the task of enumerating span assignments can be simplified, in our opinion, a lot by

forgetting about the spans themselves. Annotated automata and their derivatives can be

seen as a version of document spanners in which a ever-present difficulty, which is having

multiple symbols per document position, is completely avoided.

Using a modular data structure which is almost fully independent to the query language

to represent the enumerable output data. Although the algorithm itself that builds the

structure can be derived from already known results for circuits, the Enumerable Compact

Sets and Enumerable Compact Sets with Shifts data structures streamline the building

process significantly. The differences between our framework and previous algorithms for

circuits are most patent in Chapter 3, as it is used to update the complete data structure in

constant (data-independent) time.

186

The shown results also leave open future work in different avenues of improvement.

We will list them by organizing them by the three main chapters.

Regarding the work detailed in Chapter 3, one direction of future work is to find a

streaming evaluation algorithm with polynomial update-time for non-deterministic VPAnn

(i.e., in the size of the VPAnn). In (Amarilli et al., 2019a), the authors provided a poly-

time offline algorithm for non-deterministic word annotators (called vset automata). They

extended this result to trees in (Amarilli et al., 2019b). One could use these techniques in

Algorithm 2; however, it is unclear how to extend ECS to eliminate duplicates in a natural

way.

Regarding space resources, another direction is to find an “instance optimal” streaming

evaluation algorithm for VPAnn. As we mentioned, this problem generalizes the weak

evaluation problem stated in (Segoufin & Vianu, 2002), given that it also considers the

space to represent the output compactly.

Finally, it would be interesting to explore practical implementations. We believe that

the data structure and algorithm presentation are well-suited for this and that they leave

space for pertinent optimizations.

In Chapter 4 we presented our formalism of annotated grammars and our results on

the efficient enumeration of all annotations of an input string. Our results achieve output-

linear delay, and cubic-time preprocessing if the grammar is unambiguous, quadratic-time

if it is rigid, and linear-time for profiled-deterministic PDAnns.

The main question left open in the chapter is that of the precise complexity of this task,

depending on the grammar formalism. For instance, can we improve the O(n3) algorithm

to match the complexity of Valiant’s parser? For which grammar classes can we extend the

linear-time preprocessing approach? We believe, however, that an absolute classification

is out of reach, given that classifying the fine-grained complexity of parsing is still open

to a large extent even in the case of unannotated CFGs.

187

Given that the enumeration task is at least as difficult as parsing, it would be inter-

esting to know about a tighter lower bound for enumeration in some fragment that is not

immediately derivable from the parsing task itself.

With regards to Chapter 5, one natural direction for future work is to study which

other compression schemes allow output-linear delay enumeration for evaluating anno-

tated automata. To the best of our knowledge, the only model for compressed data in

which spanner evaluation has been studied is SLPs. However, other models (such as some

based on run-length encoding) allow better compression rates and might be more desirable

results in practice.

Regarding the Shift-ECS data structure, it would be interesting to see how further

one could extend the data structure while still allowing output-linear delay enumeration.

Another aspect worth studying is whether there are enumeration results in other areas that

one can improve using Shift-ECS.

Another aspect that might be improvable in Shift-ECS, or even the original ECS data

structure, is the fact that output-linear delay allows an enumeration scheme where the user

waits O(|w|) time to see a single symbol of w. Is there more fine-grained enumeration

bound which produces each output symbol in an output string with constant-delay?

One more direction is seeing if the extending the concisely annotated automata model

complex models of computation, such as Tree Automata or Pushdown Automata allows

for further improvements in known results related to spanner evaluation.

Lastly, it would be interesting to study whether one can apply fast matrix multiplication

techniques to Algorithm 5 to improve the running time to sub-cubic time in the number

of states.

188

REFERENCES

Abboud, A., Backurs, A., & Williams, V. V. (2018). If the current clique algorithms are

optimal, so is Valiant’s parser. SIAM J. Comput., 47(6).

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer

algorithms. Addison-Wesley.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. Addison

wesley, 7(8), 9.

Altınel, M., & Franklin, M. J. (2000). Efficient filtering of XML documents for selective

dissemination of information. In Vldb (pp. 53–64).

Alur, R., Fisman, D., Mamouras, K., Raghothaman, M., & Stanford, C. (2020). Stream-

able regular transductions. Theor. Comput. Sci., 807, 15–41.

Alur, R., & Madhusudan, P. (2004a). Visibly pushdown languages. In Stoc.

Alur, R., & Madhusudan, P. (2004b). Visibly pushdown languages. In Proceedings of the

36th annual ACM symposium on theory of computing, chicago, il, usa, june 13-16,

2004 (pp. 202–211).

Amarilli, A., Bourhis, P., Jachiet, L., & Mengel, S. (2017). A circuit-based approach to

efficient enumeration. In Icalp (Vol. 80, pp. 111:1–111:15).

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019a). Constant-delay enumera-

tion for nondeterministic document spanners. In Icdt (pp. 22:1–22:19).

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019b). Enumeration on trees with

tractable combined complexity and efficient updates. In Pods (pp. 89–103).

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019c). Constant-delay enumera-

tion for nondeterministic document spanners. In icdt.

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019d). Enumeration on trees with

tractable combined complexity and efficient updates. In pods.

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2020). Constant-delay enumeration

for nondeterministic document spanners. TODS.

https://arxiv.org/abs/1504.01431
https://arxiv.org/abs/1504.01431
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1174&context=cis_papers
https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2003.02576
https://arxiv.org/abs/2003.02576
https://dl.acm.org/journal/tods

189

Arenas, M., Croquevielle, L. A., Jayaram, R., & Riveros, C. (2019). Efficient logspace

classes for enumeration, counting, and uniform generation. In Pods (pp. 59–73).

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues

in data stream systems. In Sigmod (pp. 1–16).

Bagan, G. (2006a). MSO queries on tree decomposable structures are computable with

linear delay. In Csl (pp. 167–181).

Bagan, G. (2006b). MSO queries on tree decomposable structures are computable with

linear delay. In Csl.

Bagan, G., Durand, A., & Grandjean, E. (2007). On acyclic conjunctive queries and

constant delay enumeration. In Csl (pp. 208–222).

Bar-Yossef, Z., Fontoura, M., & Josifovski, V. (2005). Buffering in query evaluation over

XML streams. In Pods (pp. 216–227).

Bar-Yossef, Z., Fontoura, M., & Josifovski, V. (2007). On the memory requirements of

XPath evaluation over XML streams. J. Comput. Syst. Sci., 73(3), 391–441.

Barloy, C., Murlak, F., & Paperman, C. (2021). Stackless processing of streamed trees. In

Pods.

Berkholz, C., Gerhardt, F., & Schweikardt, N. (2020). Constant delay enumeration for

conjunctive queries: a tutorial. ACM SIGLOG News, 7(1), 4–33.

Berkholz, C., Keppeler, J., & Schweikardt, N. (2017). Answering conjunctive queries

under updates. In Pods (pp. 303–318).

Berstel, J. (2013). Transductions and context-free languages. Springer-Verlag.

Boucher, C., Gagie, T., I, T., Köppl, D., Langmead, B., Manzini, G., . . . Rossi, M. (2021).

PHONI: streamed matching statistics with multi-genome references. In A. Bilgin,

M. W. Marcellin, J. Serra-Sagristà, & J. A. Storer (Eds.), 31st data compression

conference, DCC 2021, snowbird, ut, usa, march 23-26, 2021 (pp. 193–202). IEEE.

Bourhis, P., Grez, A., Jachiet, L., & Riveros, C. (2021). Ranked enumeration of MSO

logic on words. In Icdt (Vol. 186, pp. 20:1–20:19).

Bourhis, P., Reutter, J. L., & Vrgoc, D. (2020). JSON: Data model and query languages.

Inf. Syst., 89, 101478.

190

Brahem, M., Zeitouni, K., & Yeh, L. (2020). ASTROIDE: A unified astronomical big

data processing engine over spark. IEEE Trans. Big Data, 6(3), 477–491.

Bucchi, M., Grez, A., Quintana, A., Riveros, C., & Vansummeren, S. (2022). CORE: a

complex event recognition engine. Proc. VLDB Endow., 15(9), 1951–1964.

Caralp, M., Reynier, P., & Talbot, J.-M. (2015). Trimming visibly pushdown automata.

Theor. Comput. Sci., 578, 13–29.

Chen, S., & Lai, C. (2023). Patent litigation prediction using machine learning approaches.

In C. Stephanidis, M. Antona, S. Ntoa, & G. Salvendy (Eds.), HCI international

2023 posters - 25th international conference on human-computer interaction, HCII

2023, copenhagen, denmark, july 23-28, 2023, proceedings, part V (Vol. 1836, pp.

389–395). Springer.

Chen, Y., Davidson, S. B., & Zheng, Y. (2006). An efficient XPath query processor for

XML streams. In Icde (p. 79).

Chirkova, R., & Yang, J. (2012). Materialized views. Found. Trends Databases, 4(4),

295–405.

Chomsky, N., & Schützenberger, M. P. (1959). The algebraic theory of context-free

languages. In Studies in logic and the foundations of mathematics (Vol. 26).

Claude, F., & Navarro, G. (2011). Self-indexed grammar-based compression. Fundam.

Informaticae, 111(3), 313–337.

Courcelle, B. (2009). Linear delay enumeration and monadic second-order logic. Discret.

Appl. Math., 157(12).

Driscoll, J. R., Sarnak, N., Sleator, D. D., & Tarjan, R. E. (1986a). Making data structures

persistent. In Stoc.

Driscoll, J. R., Sarnak, N., Sleator, D. D., & Tarjan, R. E. (1986b). Making data structures

persistent. In Stoc (pp. 109–121).

Durand, A., & Grandjean, E. (2007). First-order queries on structures of bounded degree

are computable with constant delay. ACM Trans. Comput. Log., 8(4), 21.

Fagin, R., Kimelfeld, B., Reiss, F., & Vansummeren, S. (2015). Document spanners: A

formal approach to information extraction. J. ACM, 62(2), 12:1–12:51.

http://www-igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1963-7ChomskyAlgebraic.pdf
http://www-igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1963-7ChomskyAlgebraic.pdf
https://www.sciencedirect.com/science/article/pii/0022000089900342
https://www.sciencedirect.com/science/article/pii/0022000089900342

191

Fang, X., Wu, H., Jing, J., Meng, Y., Yu, B., Yu, H., & Zhang, H. (2024). NSEP:

early fake news detection via news semantic environment perception. Inf. Process.

Manag., 61(2), 103594.

Filiot, E., Gauwin, O., Reynier, P., & Servais, F. (2019). Streamability of nested word

transductions. LMCS, 15(2).

Filiot, E., Raskin, J., Reynier, P., Servais, F., & Talbot, J. (2018). Visibly pushdown

transducers. JCSS, 97, 147–181.

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., & Vrgoc, D. (2018). Constant

delay algorithms for regular document spanners. In Pods.

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., & Vrgoc, D. (2020). Efficient

enumeration algorithms for regular document spanners. ACM Trans. Database Syst.,

45(1), 3:1–3:42.

Fortuna, P., Soler Company, J., & Wanner, L. (2021). How well do hate speech, toxicity,

abusive and offensive language classification models generalize across datasets? Inf.

Process. Manag., 58(3), 102524.

Freydenberger, D. D. (2019). A logic for document spanners. Theory Comput. Syst.,

63(7), 1679–1754.

Freydenberger, D. D., Kimelfeld, B., & Peterfreund, L. (2018). Joining extractions of

regular expressions. In Pods (pp. 137–149).

Gauwin, O., Niehren, J., & Roos, Y. (2008). Streaming tree automata. Inf. Process. Lett.,

109(1), 13–17.

Gauwin, O., Niehren, J., & Tison, S. (2009a). Bounded delay and concurrency for earliest

query answering. In Lata (Vol. 5457, pp. 350–361).

Gauwin, O., Niehren, J., & Tison, S. (2009b). Earliest query answering for deterministic

nested word automata. In Fct (Vol. 5699, pp. 121–132).

Ginsburg, S., & Ullian, J. (1966). Ambiguity in context free languages. JACM, 13(1).

Gou, G., & Chirkova, R. (2007). Efficient algorithms for evaluating XPath over streams.

In Sigmod (pp. 269–280). ACM.

Green, T. J., Gupta, A., Miklau, G., Onizuka, M., & Suciu, D. (2004). Processing XML

https://arxiv.org/abs/1803.05277
https://arxiv.org/abs/1803.05277

192

streams with deterministic automata and stream indexes. ACM Trans. Database

Syst., 29(4), 752–788.

Grez, A., & Riveros, C. (2020). Towards streaming evaluation of queries with correlation

in complex event processing. In Icdt (Vol. 155, pp. 14:1–14:17).

Grez, A., Riveros, C., & Ugarte, M. (2019). A formal framework for complex event

processing. In Icdt (pp. 5:1–5:18).

Grez, A., Riveros, C., Ugarte, M., & Vansummeren, S. (2021). A formal framework for

complex event recognition. ACM Trans. Database Syst., 46(4), 1–49.

Idris, M., Ugarte, M., & Vansummeren, S. (2017). The dynamic Yannakakis algorithm:

Compact and efficient query processing under updates. In Sigmod (pp. 1259–1274).

ITU. (2023). Facts and figures 2023 - internet use. https://www.itu.int/itu

-d/reports/statistics/2023/10/10/ff23-internet-use/. (Ac-

cessed: 2024-02-20)

Jerrum, M., Valiant, L. G., & Vazirani, V. V. (1986). Random generation of combinatorial

structures from a uniform distribution. Theor. Comput. Sci., 43, 169–188.

Josifovski, V., Fontoura, M., & Barta, A. (2005). Querying XML streams. VLDB J., 14(2),

197–210.

Kara, A., Nikolic, M., Olteanu, D., & Zhang, H. (2020). Trade-offs in static and dynamic

evaluation of hierarchical queries. In Pods (pp. 375–392).

Kieffer, J. C., & Yang, E. (2000). Grammar-based codes: A new class of universal lossless

source codes. IEEE Trans. Inf. Theory, 46(3), 737–754.

Kumar, V., Madhusudan, P., & Viswanathan, M. (2007). Visibly pushdown automata for

streaming XML. In Www (pp. 1053–1062).

Lange, M., & Leiß, H. (2009). To CNF or not to CNF? An efficient yet presentable version

of the CYK algorithm. Informatica Didactica, 8(2009).

Li, W., Shi, X., Huang, D., Shen, X., Chen, J., Kobayashi, H. H., . . . Shibasaki, R. (2023).

Predlife: Predicting fine-grained future activity patterns. IEEE Trans. Big Data,

9(6), 1658–1669.

Liang, W., Cao, J., Chen, L., Wang, Y., Wu, J., Beheshti, A., & Tang, J. (2023). Crime

https://www.itu.int/itu-d/reports/statistics/2023/10/10/ff23-internet-use/
https://www.itu.int/itu-d/reports/statistics/2023/10/10/ff23-internet-use/
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf

193

prediction with missing data via spatiotemporal regularized tensor decomposition.

IEEE Trans. Big Data, 9(5), 1392–1407.

Libkin, L. (2004). Elements of finite model theory (Vol. 41). Springer.

Lohrey, M. (2012). Algorithmics on SLP-compressed strings: A survey. Groups Complex.

Cryptol., 4(2), 241–299.

Maturana, F., Riveros, C., & Vrgoc, D. (2018). Document spanners for extracting incom-

plete information: Expressiveness and complexity. In Pods (pp. 125–136).

Maurer, H. A. (1969). A direct proof of the inherent ambiguity of a simple context-free

language. JACM, 16(2).

Netflix. (2012). Netflix recommendations: Beyond the 5 stars (part 1).

https://netflixtechblog.com/netflix-recommendations

-beyond-the-5-stars-part-1-55838468f429. (Accessed: 2024-02-

20)

Nikolic, M., & Olteanu, D. (2018). Incremental view maintenance with triple lock factor-

ization benefits. In Sigmod (pp. 365–380).

Nowotka, D., & Srba, J. (2007). Height-deterministic pushdown automata. In Mfcs.

Olteanu, D. (2007). SPEX: Streamed and progressive evaluation of XPath. IEEE Trans.

Knowl. Data Eng., 19(7), 934–949.

Olteanu, D., Furche, T., & Bry, F. (2004). An efficient single-pass query evaluator for

XML data streams. In Sac (pp. 627–631).

Olteanu, D., & Závodný, J. (2015). Size bounds for factorised representations of query

results. ACM TODS, 40(1), 2:1–2:44.

Peterfeund, L. (2019). The complexity of relational queries over extractions

from text (Doctoral dissertation, Technion). Retrieved from http://

www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/

2019/PHD/PHD-2019-10.pdf

Peterfreund, L. (2021). Grammars for document spanners. In Icdt (pp. 7:1–7:18).

Peterfreund, L. (2023). Enumerating grammar-based extractions. Discrete Applied Math-

ematics, 341, 372-392.

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
http://www2.informatik.uni-stuttgart.de/fmi/szs/people/nowotka/Papers/Hpda.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf

194

Peterfreund, L., ten Cate, B., Fagin, R., & Kimelfeld, B. (2019). Recursive programs for

document spanners. In Icdt.

Pin, J. (Ed.). (2021). Handbook of automata theory. European Mathematical Society

Publishing House, Zürich, Switzerland.

Rytter, W. (2002). Application of lempel-ziv factorization to the approximation of

grammar-based compression. In Cpm (Vol. 2373, pp. 20–31).

Schmid, M. L., & Schweikardt, N. (2021). Spanner evaluation over SLP-compressed

documents. In Pods (pp. 153–165).

Schmid, M. L., & Schweikardt, N. (2022). Query evaluation over SLP-represented docu-

ment databases with complex document editing. In Pods (pp. 79–89).

Schmitz, S. (2012). Can all unambiguous grammars be parsed in linear time? Theo-

retical Computer Science Stack Exchange. Retrieved from https://cstheory

.stackexchange.com/q/10504 (Version: 2012-03-02)

Segoufin, L. (2013). Enumerating with constant delay the answers to a query. In Icdt (pp.

10–20).

Segoufin, L., & Vianu, V. (2002). Validating streaming XML documents. In Pods (pp.

53–64).

Shalem, M., & Bar-Yossef, Z. (2008). The space complexity of processing XML twig

queries over indexed documents. In Icde (pp. 824–832).

Similarweb. (2024). Top websites ranking. https://www.similarweb.com/top

-websites/. (Accessed: 2024-02-20)

Storer, J. A., & Szymanski, T. G. (1982). Data compression via textual substitution. J.

ACM, 29(4), 928–951.

ten Cate, B., & Marx, M. (2007). Navigational XPath: calculus and algebra. SIGMOD

Record, 36(2), 19–26.

Torunczyk, S. (2020). Aggregate queries on sparse databases. In Pods (pp. 427–443).

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE Trans. Inf. Theory, 23(3), 337–343.

https://drops.dagstuhl.de/opus/volltexte/2019/10315/pdf/LIPIcs-ICDT-2019-13.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10315/pdf/LIPIcs-ICDT-2019-13.pdf
https://cstheory.stackexchange.com/q/10504
https://cstheory.stackexchange.com/q/10504
https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/

	AGRADECIMIENTOS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Summary of contributions
	1.1.1. Nested streaming queries
	1.1.2. Annotated Grammars
	1.1.3. Queries over compressed documents

	2. PRELIMINARIES
	2.1. Strings and Finite State Automata
	2.2. Document Spanners
	2.3. Enumeration Algorithms
	2.4. Model of Computation

	3. ENUMERATION FOR NESTED QUERIES
	3.1. Preliminaries
	3.2. Streaming evaluation with output-linear delay
	3.3. Visibly pushdown annotators
	3.4. Results and discussion
	3.5. Enumerable compact sets: a data structure for output-linear delay
	3.6. Evaluating visibly pushdown annotators with output-linear delay
	3.7. Application: document spanners and extraction grammars
	3.8. Related Work

	4. ENUMERATION FOR ANNOTATED GRAMMARS
	4.1. Grammars and Annotators
	4.2. Unambiguous Grammars
	4.3. Rigid Grammars
	4.3.1. Definitions

	4.4. Pushdown Annotators
	4.5. Application: Document Spanners
	4.6. Related Work

	5. ENUMERATION ON SLP-COMPRESSED DOCUMENTS
	5.1. Setting and main problem of the chapter
	5.2. Enumerable compact sets with shifts
	5.3. Evaluation of annotated automata over SLP-compressed strings
	5.4. Applications in regular spanners
	5.5. Constant-delay preserving complex document editing

	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

