PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
SCHOOL OF ENGINEERING

OUTPUT-LINEAR ENUMERATION FOR
EXTENSIONS OF MSO

MARTIN ALONSO MUNOZ CRUCES

Thesis submitted to the Office of Graduate Studies in partial
fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

CRISTIAN RIVEROS

Santiago de Chile, March 2025

© MMXXV, MARTIN MUKNoz

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
SCHOOL OF ENGINEERING

OUTPUT-LINEAR ENUMERATION FOR
EXTENSIONS OF MSO

MARTIN ALONSO MUNOZ CRUCES

Members of the Committee:
CRISTIAN RIVEROS
DOMAGOJ VRGOC
PABLO BARCELO
GONZALO NAVARRO
NICOLE SCHWEIKARDT
SERGIO MATURANA

Thesis submitted to the Office of Graduate Studies in partial
fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, March 2025

© MMXXV, MARTIN MUKNoz

Para Lete

AGRADECIMIENTOS

Acé le dedico una pagina y media a las personas que me acompafiaron durante estos
seis afos (de cuatro) mientras realizaba mi doctorado y escribia esta tesis. Y por qué no, a

los que me motivaron a seguir este camino.

El agradecimiento mas importante es a Cristian que me recibié cuando no sabia nada
y ahora puedo decir que sé algo mds que nada. Me acompafid y guid sin dejarme en
ningin momento, me mostrd una pincelada de temas de investigacion que resultaron ser
profundos e interesantes a concho y que espero me van a mantener ocupado por un buen
rato. También gracias a él y a Cristian Ruz por convertirme en coach y agregarle una

dimension tan llenadora a mi doctorado.

A Marcelo por haber estado ahi cuando yo sabia ain menos que nada y por el tiempo

que me ha dado entonces y ahora.

Gracias a la PUC, al IMFD, a ANID y al Fondecyt de Cristian que me han mantenido

con vida, y al comité de candidatura+defensa por el apoyo.

To Antoine and Louis for welcoming me in Paris twice, letting me join on some of
the most inspiring research meetings of my career, and showing me what is hopefully a

preview of the next few years of my life.

A la Seleccién de Programacion Competitiva del DCC, y a toda la comunidad actual
de Programacion Competitiva en Chile por la motivacién y el talento, por convertirse en
un grupo de alumnos de los que puedo sentir orgullo de segunda mano y en un grupo
de amistades con los que puedo seguir armando proyectos y juntas. Y de acd a Bella y

Sensual por no parar de ganar hasta el final y llevarme a darle la vuelta al mundo.

A la comunidad antigua de programacion competitiva, a Jorge Pérez, Cristian Ruz,
a Marinkovic, a Pablo, Koco y a Lete. Ahi entendi cudl es la parte que importa de la

computacion.

Una mencién honrosa a la maquina de café del DCC y a Magnet: ambos me dieron un

empujon hacia el lado de la investigacion y la academia en puntos cruciales de mi carrera.
A los de la oficina de doctorado, a Alda, Ceci, Yessenia, a Antonieta y a Cristian Ruz.

A los DCCompas por el apaiie, a los cabros de siempre por estar ahi siempre y al

AMQ.

Gracias a mi papd, mi mamd, a la Isa y al Luciano por todo lo demads, por no fallarme

nunca y por ser mi centro.

il

TABLE OF CONTENTS

AGRADECIMIENTOS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

RESUMEN

1. INTRODUCTION

I1.1.

Summary of contributionso

1.1.1. Nested streaming queries

1.1.2. Annotated Grammars

1.1.3. Queries over compressed documents

2. PRELIMINARIES

2.1.
2.2.
2.3.
2.4.

Strings and Finite State Automata
Document Spanners
Enumeration Algorithmso 0oL

Model of Computation

3. ENUMERATION FOR NESTED QUERIES

3.1.
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.

Preliminaries
Streaming evaluation with output-lineardelay
Visibly pushdown annotators
Results and discussiono
Enumerable compact sets: a data structure for output-linear delay
Evaluating visibly pushdown annotators with output-linear delay
Application: document spanners and extraction grammars

Related Work

vil

viil

11
14

16
16
17
18
19

4. ENUMERATION FOR ANNOTATED GRAMMARS

4.1. Grammars and Annotators

4.2. Unambiguous Grammars

4.3. Rigid Grammars
43.1. Definitions

4.4, Pushdown Annotators

4.5. Application: Document Spanners

4.6. Related Work

5. ENUMERATION ON SLP-COMPRESSED DOCUMENTS

5.1. Setting and main problem of the chapter

5.2. Enumerable compact sets with shifts

5.3. Evaluation of annotated automata over SLP-compressed strings

5.4. Applications in regular spanners

5.5. Constant-delay preserving complex document editing

6. CONCLUSIONS AND FUTURE WORK

REFERENCES

v

83
84
86
95
95
113
129
142

144
145
149
165
170
180

185

188

3.1

3.2

33

34

3.5

3.6

3.7

3.8

LIST OF FIGURES

An example of a VPAnn 7 that marks all pairs of positions that correspond to

matching brackets.o 28

A VPAnn implementing the CPath query Q = //a/b. Its input alphabet
consists of the sets 3° and >~ of open and closed tags, respectively, {A, B, C}
is the stack alphabet, and {|} is the output alphabet. 29

VPAnn used in the proof of Proposition 3.3. On 77, a loop over a node p

labeled by * represents the four transitions (p, <a, p, X), (p,a>, X, p), (p, b, p)

Evolution of the stack St (represented by dashed arrows) for an iterator
over the topmost union node in the figure. The underlying ECS contains
only union nodes and six bottom nodes. The first figure is St after calling
St <— push(St, v), the second is after calling St <~ TRAVERSE(St). The last

two figures represent successive calls to pop(St), St < TRAVERSE(St). . . . 53

Gadget for union(D, v3,v4). Nodes v', uy, us,v3 and vy are labeled as U.

Dashed and solid lines denote the mappings in ¢’ and 7’ respectively. 57

Gadgets for prod as defined for an e-ECS. Nodes v, v, and v,, correspond to v’

as defined for cases (a), (b), and (¢), respectively. 59

Left: An example run of some VPA A at step k. Right: Illustration of two
nondeterministic runs for some VPA A, as considered in the determinization

PrOCESS. . . v v o o e e e e 63

Example of running Algorithm 2 over the VPAnn 7 from Figure 3.1 and a
stream S such that S[1,6] = <<><>>. The bottom part illustrates the state

of D, and the node from D that is stored at every new index at each step. . . . 68

A

5.1

5.2

5.3

54

5.5

Example of an annotated automaton. 147

An example of a Shift-ECS with output alphabet {x, y}. We use dashed and
solid edges for the left and right partial functions, respectively. 151

Evolution of the stack St (written on the bottom and represented by dashed
arrows) for an iterator over the node v in the figure. The underlying ECS
is made of union nodes, two Z nodes, and six bottom nodes. The first
figure is St after calling St <— push(St, (v,0)), the second is after calling
St <— TRAVERSE(St). The last two figures represent successive calls to

pop(St), St <= TRAVERSE(St). 156

(a) Gadget for prod(D, vy, vs, k). (b) Gadget for union(D, vs,vs). We use
dashed and solid edges for the left and right mappings, respectively. Node
names are in grey at the left of each node. Nodes in square boxes are the input

and output nodes of each operation. 161

Gadgets for prod as defined for a Shift-ECS with the e-node. 164

vi

LIST OF TABLES

vii

ABSTRACT

Enumeration algorithms for data extraction queries are especially relevant in modern-day
systems where data reaches extremely large sizes while sometimes having little-to-no or-
ganization. This thesis proposes an enumeration framework for queries for data extraction
that can be modeled by different formal languages, and in some cases, over compressed
data. This is done by the development of an enumeration data structure called Enumerable
Compact Set, which provides a set of basic operations over sets, each implementable in
constant time, that render a concise representation of the set of results which can then be

enumerated efficiently.

First, this thesis provides an algorithm for enumerating results of a query that has been
modeled by a nested-word automata, over a nested document. This algorithm is built
to work in a streaming setting, and requires time that is independent from the data size

(constant in data-complexity) per input symbol.

Second, we detail three algorithms for enumeration for queries that are modeled by context-
free grammars. We deal with the cases of unambiguous, rigid and determinable grammars,

which require cubic, quadratic and linear time over the data, respectively.

Third, we show enumeration over compressed documents via an algorithm that receives
a regular-language query and a document that is concisely represented as a straight-line
program. The enumeration can be done after linear time preprocessing in the size of the

compact representation.

This thesis also serves as a proof of concept of the Annotated Automata model. This model
properly subsumes Document Spanners efficient reductions, and allows the construction
of algorithms that we deem to be more intuitive and easier to implement. Needless to say,

all of our results are also applicable to Document Spanners.

viii

Keywords: Data Structures and Algorithms, Formal Languages and Automata Theory,

Logic in Computer Science.

X

RESUMEN

Los algoritmos de enumeracion para consultas de extraccion de datos son especialmente
relevantes en los sistemas de hoy en dia, donde los datos alcanzan tamafios extremada-
mente grandes y, a veces, tienen poca o ninguna organizacién. Esta tesis propone un
marco tedrico de enumeracion para consultas de extraccion de datos que se pueden mode-
lar mediante diferentes lenguajes formales y, en algunos casos, sobre datos comprimidos.
Esto se hace mediante el desarrollo de una estructura de datos de enumeracion llamada
Enumerable Compact Sets (Conjuntos Comprimidos Enumerables en inglés), que propor-
ciona un conjunto de operaciones bdsicas sobre conjuntos, cada uno implementable en
tiempo constante, cuyo resultado es una representacion concisa del conjunto de resultados

que luego se puede enumerar de manera eficiente.

En el primer capitulo, esta tesis entrega un algoritmo para enumerar los resultados de una
consulta que ha sido modelada por un autémata de palabras anidadas, sobre un documento
anidado. Este algoritmo estd diseilado para funcionar en un entorno de streaming y re-
quiere un tiempo independiente al tamafio de los datos (constante en data complexity) en

cada simbolo de entrada.

En el segundo capitulo, detallamos tres algoritmos de enumeracion para consultas que se
modelan mediante gramadticas libres de contexto. Tratamos los casos de gramaticas no-
ambiguas, rigidas y deterministas, que requieren tiempo cubico, cuadrético y lineal sobre

los datos, respectivamente.

En el tercer capitulo, mostramos la enumeracion sobre documentos comprimidos mediante
un algoritmo que recibe una consulta en lenguaje regular y un documento que se representa
concisamente como un programa straight-line. La enumeracion se puede realizar después

del preprocesamiento en tiempo lineal en el tamafio de la representacién compacta.

Esta tesis también sirve como prueba de concepto del modelo de Annotated Automata
(Autématas anotados en inglés). Este modelo considera satisfactoriamente reducciones
eficientes desde Document Spanners y permite la construccién de algoritmos que consid-
eramos mds intuitivos y faciles de implementar. Vale decir que todos nuestros resultados

también son aplicables a Document Spanners.

Keywords: Estructuras de datos y algoritmos, lenguajes formales y teoria de automatas,

l6gica en ciencias de la computacion.

X1

1. INTRODUCTION

The term Big Data is believed to have been originated in the mid-1990s, back when
the Internet was utilized by some tens of millions of users. Even then, as the usage of the
term suggests, there was a distinct necessity of processing tremendous amounts of data ef-
ficiently. In 2023, this number grew to 5,4 billion users (ITU, 2023), and that has naturally
brought a great increase in the amount of raw data that is available and required to be pro-
cessed. An example of online data task that has become commonplace are recommenda-
tion algorithms. Nowadays, four out of the five most visited sites on the Internet nowadays
use user-generated information to suggest content back to the users (Similarweb, 2024).
To name a few numbers, Netflix reported in 2012 that their users queued 2 million movies
and TV shows, and generated 4 million ratings a day (Netflix, 2012), all of which is data
that feeds into their recommendation algorithms. Another task is content management
and moderation. In contexts where millions of messages are being sent daily, these are
considered crucial to curb undesirable data such as fake news (Fang et al., 2024) and hate
speech (Fortuna, Soler Company, & Wanner, 2021). These cases show how overreaching,

diverse and massive the online data processing tasks have become.

The blowup of large data processing has happened in the offline world as well. In bio-
logical research, human genomes consist of around three billion base pairs, which translate
into several gigabytes of raw data that is processed when performing genome-matching or
detecting genetic diseases (Boucher et al., 2021). Modern space missions, such as GAIA
and LSST, are expected to produce Petabytes of data (Brahem, Zeitouni, & Yeh, 2020).
To name a few other examples of offline data processing, patents are analyzed in bulk in
order to predict future litigations (S. Chen & Lai, 2023); GPS records from large popula-
tions can be used in urban planning projects (Li et al., 2023); and historical crime data is

massively processed to predict crime (Liang et al., 2023).

The importance and desirability of having adequate data processing solutions is un-
questionable. In many cases, these algorithms need to be sharply efficient, to the point of

making any solution that takes time longer than linear in the data size useless in practice.

In database systems, it is common to talk about guery evaluation as the most elemen-
tary task which extracts relevant information from data. It can be formally defined by an
instance (@), D) in which @ is the query and D is the data. Each query () also defines a
function which maps D into the desired set of outputs (D). As an example, consider
the task of detecting if a chromosome, written as a sequence of bases, contains a certain
pattern in it that may correspond to a particular disease. In this case, it would make sense
to let D be the sequence of bases written as a string, and () would be the pattern one wants
to find. If the task is a yes/no question — is the pattern () present in D? — then (D) can
evaluate to either true or false, but if one wants to also know all of the positions in the
sequence that match that pattern, (D) would be a set that contains all relevant positions,
and in the case there are none, it evaluates to an empty set. With this formalization, one
can talk about linear-time solutions as those algorithms that take time proportional to the

size of D to compute Q(D).

It is also useful to frame results around query languages, which define classes of
queries by their syntax and semantics. For instance, one can solve the task above by
using regular expressions as the query language (see (Pin, 2021) for a precise definition):
we can make () be the regular expression » = . *p.* where p is the pattern string. In this
case, we are using a usual semantics for regular expressions which is that has to match
the entire text; the sequence . * is a wildcard that matches any string, and so r is a match
if the data is equal to anything, followed by p, followed by anything. Another aspect of
query languages that make them natural to work with is that each of them also comes with
a certain expressive power. For example, no regular expression can define the query of
checking if two strings are identical (Pin, 2021), whereas there are more powerful query
languages that can. As evaluation algorithms are built for each particular query language,

a weaker one can require less running time or less memory space in the worst case. It can

happen that the same query becomes cheaper to compute if the user simply expresses it in

a different language.

When measuring the execution time of a evaluation algorithm, the classic notion is
to count the number of steps taken by the algorithm from the moment it begins, until the
last output is printed. Since algorithms are built for inputs of different sizes, we typically
measure this execution time as a function of the size of the input. This is a reasonable
model whenever the overall output size is small, e.g., when the output is simply true or
false, or a numeric value. However, for tasks in which one can expect a large amount of
outputs, which occur quite naturally in many data management problems, it makes sense
to treat the output printing phase separately. Naturally, the best execution time one can
expect for this phase is linear in the size of the entire output set, so the overall running
time that we will set as our goal is given by |D| 4 |Q(D)|. Here we are using the standard

notation |z| to refer to the size of an adequate encoding of z.

In database systems, there are many cases in which an evaluation problem can have a
large output set. For instance, one may be interested not only in all elements in the data
that satisfy a certain condition, but in tuples or subsets of them. Or perhaps the data may
not fit in memory: it could be given in a streaming fashion or it could be compressed,
and this implies that even an output set that has size linear in the raw data might be huge.
An obvious problem here is that producing all outputs can take unreasonably long, but a
more subtle one is that when one measures the running time of an algorithm, the cost of
writing the outputs hides the cost of actually doing the calculations to obtain them. For
this reason, a significant line of research on query evaluation has adopted the perspective
of enumeration algorithms (Bagan, 2006a). Instead of explicitly producing all results, the
task is to enumerate them, in any order and without repetition. The cost of the algorithm
is then measured across two dimensions: the preprocessing time, which is the time needed
to read the input and prepare an enumeration data structure; and the delay, the worst-case

time that can elapse between any two solutions while enumerating using the data structure.

In the realm of enumeration algorithms, there is an even finer complexity yardstick:
We say that an algorithm has constant-delay (Segoufin, 2013) if the delay between any two
consecutive outputs is constant. One can think of this as an enumeration phase in which
the outputs are produced in a fixed pace, never stopping until the last output is produced.
However, this delay guarantee is not a reasonable one unless every output is expected to
have constant size. Instead, in a lot of cases it makes more sense to set as a goal what
we call output-linear delay (Florenzano, Riveros, Ugarte, Vansummeren, & Vrgoc, 2020).
This is a relaxation of constant-delay which only requires the delay between two outputs

to be linear in the size of the earlier one.

As an example, consider the task of receiving a list of numbers, such as L = [5,7,2,12],
and producing a list of pairs (x1,41), (z2,¥2), ..., (Tn, Yn) in which zq, s, ...z, is the
sorted list, and each y; is the difference between x; and ;. For the said L, the desired
set of outputs could be {(2,3),(5,2),(7,5),(12,00)}. A constant-delay algorithm may
simply sort the list, read it sequentially and produce each value along with the difference.
Now, consider the task of again receiving a list of numbers, but now instead of printing
the difference between two numbers, we ask for the numbers that are present in that gap.
For the input L, the output set would be {(2, 3,4), (5,6), (7,8,9,10,11), (12, 00)}. In this
case, there is no reasonable way of solving this with a constant-delay algorithm, since the
size of a single output could be arbitrarily large, even for a list of size 2. However, sorting
the list, traversing it linearly and writing down the gaps as they are seen is a perfectly valid

solution that satisfies output-linear delay.

One area where enumeration algorithms have been especially successful is the field
of information extraction, where document spanners have been proposed as a suitable
formalism (Fagin, Kimelfeld, Reiss, & Vansummeren, 2015). Information extraction cap-
tures the family of data management tasks where the data is a document, i.e, a string of
characters, and the query is a description of the information that should be extracted from
the text. A spanner formalizes this idea by defining a function that maps documents to

sets of mappings, which themselves map variables to substrings of the document (called

spans). The enumeration problem is then to enumerate all mappings of a spanner on an in-
put document. The work by Florenzano et al. (Florenzano et al., 2020) showed that, if the
spanner is described by a finite automaton, then the task could be solved with output-linear
delay after a preprocessing that is linear in the document, and polynomial in the spanner
if the automaton is deterministic; this was extended in (Amarilli, Bourhis, Mengel, &

Niewerth, 2019¢) to allow similar bounds for nondeterministic finite automata.

Solving enumeration tasks is a fundamental problem in database systems, and this is
the main topic of this thesis: finding efficient algorithms to evaluate queries over great
volumes of data with output-linear delay. In particular, we work on this problem over

nested documents or query languages over documents that allow recursion.

In many practical cases, the way these large volumes of data are contained is in doc-
uments that have a pre-established recursive structure. It may be hierarchical, like XML
and JSON documents, or program-like, as in some forms of compressed text (Ziv & Lem-
pel, 1977; Storer & Szymanski, 1982; Claude & Navarro, 2011). These documents are
designed to be read by computers; the way the user is expected to access the data is by
writing a query using a suitable query language, and then process the query through a

specialized evaluation algorithm.

Let us look at a simple XML document to show how data may be laid out in practice.
The following document (separated in two columns) contains information about musical

artists and albums satisfying the hierarchy Artist->Album-> [Title, Year]:

<Document> <Title>Fome</Title>
<Artist> <Year>1997</Year>
<Name>Los Tres</Name> </Album>
<Album> </Artist>
<Title>Los Tres</Title> <Artist>
<Year>1991</Year> <Name>La Ley</Name>
</Album> <Album>

<Album> <Title>Invisible</Title>

<Album>
<Year>1995</Year>
<Title>Ser Humano!!</Title>

</Album>
<Year>1997</Year>
</Artist>
</Album>
<Artist>
</Artist>
<Name>Tiro de Gracia</Name>
</Document>

It can be appreciated how XML owes its classification of “semi-structured data” to the
fact that the contents maintain a lot of the flexibility of unstructured data (e.g. plain-text
documents), yet there is some machine-oriented structure to the data that aids its process-
ing. In the example above, the entire document contains a list of artists, and the structure

requires the info of each to be demarcated by the tags <Document > and </Document >

In this thesis, we will sometimes restrict ourselves to evaluation tasks where the data
part of the query is presented with certain recursive structures—namely, nested docu-
ments, and program-like documents. For some tasks, we allow a more standard plain-text

structure.

Let us now discuss the presentation aspect for the guery part of a task. That is, the
query languages that we will deal with in this thesis: these are all extensions to a logic
called Monadic Second Order Logic. The logic in itself is of immense theoretical im-
portance, but in actual data extraction tasks it is rarely used as-is. The reader might be
more familiar with a query language which is equivalent in expressive power to Monadic
Second Order over documents—that is, regular expressions. In database systems and data
extraction tasks, regular expressions (regex for short) have long been a favoured choice

for theoreticians, developers and users alike.

When a single document is huge, and queries are simple enough, it makes sense to use
a language based on regular expressions, such as XPath in the case of XML. Continuing

the ”albums” example above, an XPath query that produces the albums that were released

in the year 1997 might look as follows:
(Q=//Artist/Album[Year = 1997].
This would output info about albums Fome and Ser Humano!!.

In the case of compressed text, one can use a plain regular expression, and process it
using some of the known algorithms that evaluate it on the compressed file itself (Lohrey,
2012). Among these solutions, one uses regular spanners (i.e. document spanners based
on regular expressions) over compressed documents to enumerate with delay that is loga-

rithmic in the size of the uncompressed document (Schmid & Schweikardt, 2021).

There are evaluation tasks in which regular expressions are not powerful enough, and
the data document does not have a pre-established structure. The immediate extension to
regular expressions and MSO that also allows the query itself to infer this very structure are
context-free grammars. Some scenarios in which this type of queries have been famously
used are code parsing and verification on nested documents—both scenarios where the

data itself would ideally satisfy a desired structure, but this is not a-priori guaranteed.

Grammars by themselves do not describe how to capture substrings, so they are not im-
mediately suited for extracting data. One model that has been proposed to bridge this gap
is based on document spanners and is called Extraction Grammars (Peterfreund, 2023).
These are defined by context-free grammars which allow beginning and ending position
marks in its syntax. In same work, we also find a relevant enumeration result. It shows
constant-delay enumeration after a preprocessing that takes quintic time on the size of the

document.

Having discussed some scenarios where one would want to extract data using queries
that are based on regex and their extensions, we note that each used an ad-hoc extension
of the yes/no query language to capture the desired outputs. We contrast this with MSO,
which has the ability to define queries that extract sets of positions in an input document in

a natural fashion. This is especially useful for us, as this ability implies there is a generic

adaptation from yes/no evaluation into queries with several, complex outputs, for every

extension of MSO.

This idea is the core of the Annotator framework, which translates many rule-based
binary query languages into query languages with complex outputs. It does so by contin-
uing to use the same type of binary model that describes the query while adding a second
dimension to the alphabet that describes the data—we use these as the symbols the model
will treat as letters. For instance, the underlying binary model of an annotator may accept
words such as (a, z)bb(a, y) or a(b, z)(b, y)a, and if we give the word abba to the annota-
tor, it will define an output set that includes the strings (z, 1)(y,4) and (x,2)(y, 3). The
first string represents the idea that if we extend abba by appending an x to the first position,
and a y to the fourth position, the resulting word is accepted by the model, and the second

string represents the analogous idea.

We have found that some of the relevant models for document spanners that extend
a binary query language into a complex one—as is the case for Regular Spanners and
Extraction Grammars—can be reduced into an annotator with only a minor blowup. More
importantly, we believe that this change makes the evaluation algorithms simpler, and that

it is a reason behind our finding improvements in the best-known bounds for them.

The main goal of this thesis is thus to explore the power of the Annotator framework,
and provide efficient enumeration algorithms for the ways it can be used to deal with
known query languages. It is worth noting that while many of the query languages studied
in the literature were restricted to outputs with a fixed size, annotators by default do not
impose any such restriction, so all of our results are given in the best-possible delay bound

that this circumstance allows; namely, output-linear delay.

To this end, in this thesis we present three different formalisms for information ex-
traction and then provide an efficient enumeration scheme for queries expressed in each

of them. These are: (1.) Automata over streams of nested documents, (2.) context-free

grammars which represent annotations in documents and (3.) regular automata over com-

pressed documents.

1.1. Summary of contributions

This document is structured in three main chapters. In the following, we present a

brief summary of each.

1.1.1. Nested streaming queries

Streaming query evaluation (Altinel & Franklin, 2000; Babcock, Babu, Datar, Mot-
wani, & Widom, 2002) is the task of processing queries over data streams in one pass
and with a limited amount of resources. This approach is especially useful on the web,
where servers share data, and they have to extract the relevant content as they receive it.
For structuring the data, the de facto structure on the web is nested documents, like XML
or JSON. For querying, servers use languages designed for these purposes, like XPath,
XQuery, or JSON query languages. As an illustrative example, suppose our data server

(e.g., a Web API) is continuously receiving XML documents like:
<doc> <a> <c/> <c> </c> </doc>

and for each document it has to evaluate the query Q = //a/b (i.e., to extract all b-
tags that are surrounded by an a-tag). The streaming query evaluation problem consists
of reading these documents and finding all b-tags without storing the entire document on
memory, that is, by making one pass over the data and spending constant time per tag. In
our example, we need to retrieve the 3rd and Sth tags as soon as the last tag </doc> is
received. One could consider here that the server has to read an infinite stream and perform
the query evaluation continuously, where it must enumerate partial outputs as soon as one

of the XML documents ends.

10

Researchers have studied the streaming query evaluation problem in the past, focusing
on reducing the processing time or memory usage (see, e.g. (Bar-Yossef, Fontoura, &
Josifovski, 2007)). Hence, they spent less effort on understanding the enumeration time
of such a problem, with respect to delay guarantees between outputs. Constant-delay enu-
meration is a new notion of efficiency for retrieving outputs (Durand & Grandjean, 2007;
Segoufin, 2013). Given an instance of the problem, a constant-delay enumeration algo-
rithm performs a preprocessing phase over the instance to build some indices and then
continues with an enumeration phase. It retrieves each output, one by one, taking a de-
lay that is constant between any two consecutive outcomes. These algorithms provide a
strong guarantee of efficiency since a user knows that, after the preprocessing phase, she
will access the output as if the algorithm had already computed it. These techniques have
attracted researchers’ attention, finding sophisticated solutions to several query evalua-
tion problems (Bagan, Durand, & Grandjean, 2007; Berkholz, Gerhardt, & Schweikardt,
2020; Bagan, 2006a; Amarilli, Bourhis, Jachiet, & Mengel, 2017; Florenzano et al., 2020;
Amarilli, Bourhis, Mengel, & Niewerth, 2019a).

In this chapter, we investigate the streaming query evaluation problem over nested doc-
uments by including enumeration guarantees, like constant delay. We study the evaluation
of queries given by visibly pushdown annotators (VPAnn) over nested documents. These
machines are an “output extension” of visibly pushdown automata, and have the same ex-
pressive power as MSO over nested documents. In particular, VPAnn can define queries
like O above or any fragment of query languages for XML or JSON included in MSO.
Therefore, VPAnn allow considering the streaming query evaluation from a more general

perspective, without getting married to a specific language (e.g., XPath).

We study the evaluation of VPAnn over a nested document in a streaming fashion.
Specifically, we want to find a streaming algorithm that reads the document sequentially
and spends as little time as possible per input symbol. Furthermore, whenever needed,
the algorithm can enumerate all outputs with output-linear delay. The main contribu-

tion in this chapter is an algorithm with such characteristics for the class of unambiguous

11

VPAnn. We can extend this algorithm to all VPAnn by determinization (preserving its
data complexity). Regarding memory usage, we bound the amount of memory used in
terms of the nesting of the document and the output weight. We show that our algorithm
is worst-case optimal in the sense that there are instances where the maximum amount of
memory required by any streaming algorithm is at least one of these two measures. Fi-
nally, we present some examples that show how our result can be applied to the streaming
evaluation of XML and JSON query languages. Further, we show an application of our

results in the context of information extraction by document spanners (Fagin et al., 2015).

1.1.2. Annotated Grammars

A natural way to address extraction over structured data is to move from finite au-
tomata to context-free grammars (CFGs). Context-free grammars are a well-known for-
malism: they extend regular expressions and are commonly used, e.g., in programming
language design. Common verification tasks on textual representations of tree documents
can be expressed using CFGs, and so can parsing tasks, e.g., to extract subexpressions
from source code data. However, CFGs do not describe captures, i.e., they do not specify
how to extract the parts of interest of an input document, and thus cannot be used directly

for information extraction.

This question of information extraction with grammars was studied by Peterfreund
in very recent work (Peterfreund, 2023). This paper proposed a formalism of extraction
grammars, which are CFGs extended via special terminals that describe the endpoints of
spans. Further, it presents an algorithm to enumerate the mappings captured by unambigu-
ous extraction grammars on an input document. However, while the algorithm achieves
constant-delay, the preprocessing bound is significantly worse than in the case of regular
spanners: it is quintic in the document, and exponential in the number of variables of the
grammar. This complexity is also worse than CFG parsing, e.g., the standard CYK parsing

algorithm runs in cubic time in the input string.

12

Our goal in this chapter is to study the enumeration problem for CFGs while achieving
better complexities. Our algorithms ensure a constant-delay guarantee when outputs have
constant size, and more generally ensure output-linear delay when this is not the case:
the delay is linear in the size of each produced solution. Within this delay bound, the
preprocessing time has lower complexity: it is at worse cubic in the input document, and
improves to quadratic or even linear time for restricted classes. We achieve these results
by proposing a new formalism to extend CFGs, called annotated grammars, on which we
impose an unambiguity restriction similar to that of (Peterfreund, 2023). Let us present

our specific contributions.

Our first contribution is to introduce annotated grammars (Section 4.1). They are a
natural extension of CFGs, where terminals are optionally annotated by the information
that we wish to extract. We then study the problem, given an annotated grammar G and
document s, of enumerating all annotations of s that are derived by G. This captures the
enumeration problems for regular spanners (Florenzano, Riveros, Ugarte, Vansummeren,
& Vrgoc, 2018; Amarilli, Bourhis, Mengel, & Niewerth, 2020), nested words, and even
the extraction grammars of (Peterfreund, 2023) (we explain this in Section 4.5). As we
explain, we aim for output-linear delay, which is the best possible delay in our setting

where the solutions to output may have non-constant size.

Our second contribution is to study the enumeration problem for unambiguous anno-
tated grammars (Section 4.2), that do not produce multiple times the same annotation of
an input string. This is a natural restriction to avoid duplicate results, which is also made
in (Peterfreund, 2023). For such grammars, we present an algorithm to enumerate the
annotations produced by a grammar G on a string s with output-linear delay (independent
from G or s), after a preprocessing time of O(|G|-|s|?), i.e., cubic time in s, and linear time
in G. This improves over the result of (Peterfreund, 2023) whose preprocessing is quintic.
Our algorithm has a modular design: it follows a standard design of a CFG parsing algo-
rithm, but uses the abstract data structure of Chapter 3 to represent the sets of annotations

and combine them with operators in a way that allows for output-linear enumeration. We

13

further show a conditional lower bound on the best preprocessing time that can achieve
output-linear delay, by reducing from the standard task of checking membership to a CFG,
and using the lower bound of (Abboud, Backurs, & Williams, 2018). We show that the
preprocessing time must be Q(|s|“~¢) for every ¢ > 0, where w is the Boolean matrix

multiplication exponent.

Our third contribution is to improve the preprocessing time by imposing a different
requirement on grammars. Thus, we introduce rigid annotated grammars (Section 4.3)
where, for every input string, all annotations on the string are intuitively produced by parse
trees that have the same shape. In contrast with general annotated grammars, we show that
rigid annotated grammars can always be made unambiguous, so that our algorithm applies
to them. But we also show that, under this restriction, the data complexity of our algorithm
goes down from cubic to quadratic time. Further, achieving sub-quadratic preprocessing
time would imply a sub-quadratic algorithm to test membership to an unambiguous CFG,

which is an open problem.

Our last contribution shows how we can, in certain cases, achieve linear-time pre-
processing complexity and output-linear delay (Section 4.4). This is the complexity of
enumeration for regular spanners, and is by definition the best possible. We show that the
same complexity can be achieved, beyond regular spanners, for a subclass of rigid gram-
mars, intuitively defined by a determinism requirement. We define it via the formalism of
pushdown annotators (PDAnn for short), which are the analogue of pushdown automata
for CFGs, or the extraction pushdown automata of (Peterfreund, 2023). We show that
PDAnn are equally expressive to annotated grammars, and that rigid CFGs correspond to
a natural class of PDAnns where all runs have the same sequence of stack heights. More-
over, we show that we can enumerate with linear-time preprocessing and output-linear
delay in the case of profiled-deterministic PDAnn, where the sequence of stack heights
can be computed deterministically over the run: this generalizes regular spanners and

visibly-pushdown automata.

14

1.1.3. Queries over compressed documents

Recently, Schmid and Schweikardt (Schmid & Schweikardt, 2021, 2022) studied the
evaluation problem for regular spanners over a document compressed by a Straight-line
Program (SLP). In this setting, one encodes a document through a context-free grammar
that produces a single string (i.e., the document itself). This mechanism allows highly
compressible documents, in some instances allowing logarithmic space compared to the
uncompressed copy. The enumeration problem consists now of evaluating a regular span-
ner over an SLP-compressed document. In (Schmid & Schweikardt, 2021), the authors
provided a logarithmic-delay (over the uncompressed document) algorithm for the prob-
lem, and in (Schmid & Schweikardt, 2022), they extended this setting to edit operations
over SLP documents, maintaining the delay. In particular, these works left open whether
one can solve the enumeration problem of regular spanners over SLP-compressed docu-

ments with a constant-delay guarantee.

In this chapter, we extend the understanding of the evaluation problem over SLP-

compressed documents in several directions.

We study the evaluation problem of annotated automata (AnnA) over SLP-compressed
documents. These automata are a general model for defining regular enumeration prob-
lems, which strictly generalizes the model of extended variable-set automaton used in (Schmid

& Schweikardt, 2021).

We provide an output-linear delay enumeration algorithm for the problem of evaluat-
ing an unambiguous AnnA over an SLP-compressed document. In particular, this result
implies a constant-delay enumeration algorithm for evaluating extended variable-set au-
tomaton, giving a positive answer to the open problem left in (Schmid & Schweikardt,

2021).

We show that this result extends to what we call a succinctly annotated automaton,

a generalization of AnnA whose annotations are succinctly encoded by an enumeration

15

scheme. We develop an output-linear delay enumeration algorithm for this model, show-
ing a constant-delay algorithm for sequential (non-extended) vset automata, strictly gen-

eralizing the work in (Schmid & Schweikardt, 2021).

Finally, we show that one can maintain these algorithmic results when dealing with

complex document editing as in (Schmid & Schweikardt, 2022).

The main technical result in this chapter is to show that the Enumerable Compact Sets
presented in Chapter 3 can be extended to deal with shift operators (called Shift-ECS). This
extension allows us to compactly represent the outputs and “shift” the results in constant
time, which is to add or subtract a common value to all elements in a set. Then, by using
matrices with Shift-ECS nodes, we can follow a bottom-up evaluation of the annotated
automaton over the grammar (similar to (Schmid & Schweikardt, 2021)) to enumerate all
outputs with output-linear delay. The combination of annotated automata and Shift-ECSs

considerably simplifies the algorithm presentation, reaching a better delay bound.

This thesis is structured in the following way: In Chapter 2, we describe some ter-
minology that will be used throughout the three main chapters. The first main chapter is
Chapter 3, in which we show our results for nested streaming queries. The second is Chap-
ter 4, in which we show our results for annotated grammars. The third is Chapter 5, in
which we show our results for queries over compressed documents. Lastly, in Chapter 6,

we give some closing words and list the main conclusions.

16

2. PRELIMINARIES

Throughout this document we will use several formalisms for processing text. In or-
der of expressiveness, we will deal with finite automata and regular expressions, nested
or visibly pushdown automata, and context-free grammars and pushdown automata. We

dedicate this chapter to defining these models.

2.1. Strings and Finite State Automata

Strings and documents. Given a finite alphabet X, a string w over X (or just a string)
is a sequence w = ajas...a, € X*. Given strings w; and wy, we write w; - wy (Or just
wjws) for the concatenation of w; and ws. We denote by |w| = n the length of the string
w = ay ...a, and by ¢ the string of length 0. We use >* to denote the set of all strings,
and X% for all strings with one or more symbols. Due to differences in the literature, in
some chapters we will refer to strings as documents with the same indications, except we

will prefer d instead of w to denote a generic document.

Regular automata. A regular automata is a tuple A = (Q, X, A, I, F') where () is a finite
set of states, Y is an input alphabet, I C () and F' C () are the initial and final set of states,

respectively, and A C @) x ¥ x () is the transition relation.
A run p of A over a string s = ajas . ..a, € X* is a sequence of the form:
al az An+1
P = q —qa — ... — (Qnt1

such that ¢; € [and, for each i € {1,...,n}, it holds that (¢;, a;,¢i+1) € A. We
say that p is accepting if ¢,+1 € F. We define the language of A as L(A) = {s |

there is an accepting run of A over s}.

17

We say that A is deterministic if for each pair (p,a) € Q) x X there exists exactly one
q € Q such that (p,a,q) € A.' We say that A is unambiguous if for each s € L(A) there

exists exactly one accepting run of A over s.

2.2. Document Spanners

Consider a document d = a; ...a, over an input alphabet X. A span of d is a pair
[i,7) with 1 <4 < j < n+ 1. Intuitively, a span represents a substring of d by identifying
the starting and ending positions. We define the substring [z, j) by d[i, j) = a;...a;_1.

We denote by Spans(d) the set of all possible spans of d.

Consider also a set of variables Vars such that ¥ N Vars = (). Let X C Vars be a
finite set of variables. An (X, d)-mapping (or just a mapping) p.: X — Spans(d) assigns
variables in X to spans of d. An (X, d)-relation is a finite set of (X, d)-mappings. Then
a document spanner P (or just spanner) is a function associated with a finite set X of

variables that map documents d into (X, d)-relations.

For X C Vars, let Cx = {F*4°| x € X} be the set of captures of X where,

intuitively, F* denotes the opening of =, and—+* its closing.

In some chapters we will use ref-words as an intermediate step between the structure
that defines a spanner (such as a grammar or an automaton) and the mappings themselves.
Formally, a ref-word is just a string € (XUCx)*. Aref-wordr = a; ...a, € (XUCx)*
is called valid for X if, for every x € X, there exists exactly one position ¢ with a; =+~
and exactly one position j with a; =, such that ¢ < j. In other words, a valid ref-
word defines a correct match of opening and closing captures. Moreover, each x € X
induces a unique factorization of r of the form r = r2- =* .7, - % .r2. This factorization
defines an (X, d)-mapping as follows. Let plain : (¥ U Cx)* — ¥* be the morphism that

removes the captures from ref-words, namely, plain(a) = a when a € ¥ and plain(c) = ¢

'In some of the literature, deterministic is defined as automata for which there exist at most one q per (p, a).
We restrict ourselves to the definition in the paragraph.

18

when ¢ € Cx. We extend plain to operate homomorphically over strings. Furthermore,
let be a valid ref-word for X, d be a document, and assume that plain(r) = d. Then
we define the (X, d)-mapping p” such that p"(z) = [i,7) iff r = r2- F* - A% 18,

i = |plain(r?)| + 1, and j = i + |plain(r,)|.

As an example, consider the documentd =hellogoodbye. Ifwelet X = {x,y},
then a valid ref-word for X would be r = hello F*FY good -* bye Y. Note that
plain(r) = d, and thus the (X, d)-mapping x" is properly defined as p"(x) = [6, 10) and
' (y) = 16,13).

2.3. Enumeration Algorithms

All of the main results in this thesis are given in the framework of enumeration al-
gorithms. Such algorithms consist of two phases. First, in the preprocessing phase, the
algorithm receives the input Z = (@, w) where () is a query and w is a string, and pro-
duces some index structure D. The preprocessing time is the worst-case running time of
this preprocessing phase, measured as a function of the input Z. We say that such an algo-
rithm has f-preprocessing time if there exists a constant ¢ such that, for every input Z, the

time for the preprocessing phase of Z is bounded by ¢ - f(|Z]).

As 7 is made of two components () and w, we also sometimes measure the prepro-
cessing time in terms of w only. This is referred to as the data complexity of the problem.
On the other hand, when a problem is measured in terms of both w and () this is referred

to as its combined complexity.

For the purposes of this definition, we will overload () to denote both the structure
that defines the query, and the function that maps w to a desired set of outputs Q(w).
In the following chapters, these concepts are separated by notation, for example, if the
input query is represented by a structure S, the associated function is denoted as [S].
Furthermore, we assume that each element y € Q(w) is a string y € Q* for some set of

output symbols (2.

19

Second, in the enumeration phase, the algorithm can use (), w and D to produce
the elements of the output set QQ(w) one after the other and without repetitions. During
this phase the algorithm: (1) writes #yi#yo# - - - #ym# to the output registers where
is a distinct separator symbol not mentioned in any output, and yi, 4o, ..., ¥y, 1S an
enumeration (without repetitions) of the set Q(w), (2) it writes the first # as soon as the

enumeration phase starts, and (3) it stops immediately after writing the last #.

For the enumeration phase, we measure the delay between two outputs as follows.
For an input z € Q*, let #y1#y27# - - - #ym# be the output of the algorithm during any
call to the enumeration phase. Furthermore, let time;(x) be the time in the enumeration
phase when the algorithm writes the ¢-th # when running on x for © < m + 1. Define
delay,(z) = time;1(z) — time;(z) for i < m. Then we say that the algorithm has output-
linear delay (Florenzano et al., 2020)2, if there exists a constant k£ such that for every
r € QF and i < m it holds that delay,(z) < k - |y;|. In other words, the number of
instructions executed by the enumeration algorithm between the time that the ¢-th and the
(7 + 1)-th # are written is linear on the size of y;. Note that, in particular, an output-linear
delay implies that the enumeration phase ends in constant time if there is no output for

enumerating.

The memory usage of the algorithm is the maximum memory used across both phases,

including the size of D.

2.4. Model of Computation

As it is common in the enumeration algorithms literature (Bagan, 2006a; Courcelle,
2009; Segoufin, 2013), for our algorithms we assume the computational model of Random
Access Machines (RAM) with uniform cost measure, and addition and subtraction as basic
operations (Aho, Hopcroft, & Ullman, 1974). We assume that a RAM has read-only input

registers where the machine places the input, read-write work registers where it does the

2output—linear delay has also been called linear delay in the literature (Courcelle, 2009)

20

computation and write-only output registers where it gives the output (i.e., the enumeration

of the results).

21

3. ENUMERATION FOR NESTED QUERIES

In this chapter, we present a query model named Visibly Pushdown Annotators (VPAnn),
which is a computational model that extends visibly pushdown automata with outputs and
has the same expressive power as Monadic Second Order over nested documents. We
study the task of receiving the input data in a streaming document, and we show an algo-
rithm which enumerates the outputs with output-linear delay after a preprocessing phase

which takes data-independent time after receiving each character in the input data.

Furthermore, we show that this algorithm is worst-case optimal in terms of update-time

per symbol and memory usage.

Outline of the chapter. In Section 3.1, we describe the main terminology and models for
the chapter. In Section 3.2, we discuss the notion of a streaming enumeration problem.
In Section 3.3, we define Visibly Pushdown Annotators (VPAnn), the logical model we
will use to represent queries over nested documents and study their expressive power.
In Section 3.4, we state the main result of the chapter and discuss some of its extent. In
Section 3.5, we show the data structure used by the algorithm, called Enumerable Compact
Set, which stores the output and handles the enumeration efficiently. Section 3.6 presents
and analyzes the main algorithm. In Section 3.7, we link our results to document spanners.

We close this chapter in Section 3.8 by discussing some related work.

3.1. Preliminaries

We start by stating the definitions of well-nested words and visibly pushdown au-

tomata. Further, we state some basic definitions that will be useful throughout the chapter.

Well-nested words and streams. Besides the usual definitions for strings, we will work

over a structured alphabet ¥ = (¥X°,%” %) comprised of three disjoint sets X<, 7,

22

and X! that contain open, close, and neutral symbols respectively'. Furthermore, we will
denote symbols in X<, ¥~ or X! by <a, a>, and a, respectively. On the other hand, we will
use s to denote any symbol in X<, X7, or X!, The set of well-nested words over ¥, denoted
as Y.°*7, is defined as the smallest set satisfying the following rules: X' U {e} C 3<*7,
if wi,wy € X7 then wy - wy € X", and if w € ¥°*” and <a € X° and b> € ¥~ then
<a-w-b> € "7, In addition, we will work with prefixes of well-nested words, that we call
prefix-nested words. We denote the set of prefixes of ¥<*~ as prefix(X<*”). Sometimes,

we will use w/i] to refer to the i-th symbol in a word w.

Visibly pushdown automata. A visibly pushdown automaton (Alur & Madhusudan,
2004b) (VPA) is a tuple:
A = (Q? Z? F? A? [7 F)

where () is a finite set of states, ¥ = (X<, X7, 3') is the structured input alphabet, T" is the

stack alphabet, I C () is a set of initial states, F' C () is a set of final states, and
AC@xEZxQxD)U@xYxI'xQ)U(QxX'xQ)

is the transition relation. A transition (¢, <a, ¢,) is a push-transition where on reading
<a € X%, the symbol ~ is pushed onto the stack and the current state switches from ¢ to
q'. Conversely, (q,a>,7,q’) is a pop-transition where on reading a> € ¥~ from the input
and v from the top of the stack, the current state changes from ¢ to ¢/, and the symbol ~
is popped. Lastly, we say that (¢, a, ¢') is a neutral transition if a € X', where there is no

stack operation.

A stack is a finite sequence o over I' where the top of the stack is the first symbol on o.

For a well-nested word w = s1 - - - s, in 3°*”, a run of A on w is a sequence:

p = (Qbal) i} (q2a02) i) s i (qn+1>0n+1)7

IIn (Alur & Madhusudan, 2004b; Filiot, Raskin, Reynier, Servais, & Talbot, 2018) these sets are named call,
return, and local, respectively.

23

where each ¢; € QQand o; € I forevery j € [1,n],q1 € 1,01 = ¢, and forevery i € [1,n]
the following holds: (1) if s; € 3%, then there is v € I" such that (g;, S;, ¢;+1,7) € A and
i1 = Y05, (2) if s; € ¥, then there is v € I such that (¢, s;,7,¢+1) € A and
0; = Y041, and (3) if s; € X', then (¢;, S, ¢i+1) € A and 0,41 = 0;. A run p is accepting
if ¢,11 € F. A well-nested word w € ¥°*” is accepted by a VPA A if there is an accepting
run of A on w. The language L(A) is the set of well-nested words accepted by .A. Note
that if p is a run of 4 on a well-nested word w, then 0,.1 = . A set of well-nested
words £ C ><*” is called a visibly pushdown language if there exists a VPA A such that
L=L(A).

AVPA A= (Q,%,T,4,1,F) is said to be deterministic if |I| = 1 and ¢ is a function
subsetof the set (Q X L > Q@ xTHU(Q@ x X X' > Q)U(Q x X' — Q). We also
say that A is unambiguous if, for every w € L(.A), there exists exactly one accepting run
of A on w. In (Alur & Madhusudan, 2004b), it is shown that for every VPA there exists

an equivalent deterministic VPA of at most exponential size.

Streams. A stream S = s1s - - - is an infinite sequence where s; € XU X~ U X!, Given
a stream S = s15 ... and positions i, 7 € N\ {0} such that ¢ < j, the word S|i, j] is the
sequence s;S;41 - -+ 5;. We also use this notation to refer to contiguous subsequences of
infinite sequences that are not composed of symbols in 3. For a stream S, we will always
assume that for each i € N\ {0}, the word S[1, 7] is a prefix of some nested word (i.e., it
can be completed to form a nested word). For our streaming algorithms, we also consider

the method yieldS which can be called to access each element of S sequentially.

3.2. Streaming evaluation with output-linear delay

Our first task in this chapter is to define a notion of a streaming enumeration prob-
lem: evaluating a query over a stream and enumerating the outputs with bounded delay.
Towards this goal, we want to restrict the resources used (i.e., time and space) and im-

pose strong guarantees on the delay. As our gold standard, we consider the notion of

24

output-linear delay defined in (Florenzano et al., 2020). This notion is a refinement of
the definition of constant-delay (Segoufin, 2013) or linear-delay (Courcelle, 2009) enu-
meration that better fits our purpose. Altogether, our plan for this section is to define a
streaming enumeration problem and then provide a notion of efficiency that a solution for

this problem should satisfy.

We adopt the setting of relations (Jerrum, Valiant, & Vazirani, 1986; Arenas, Croque-
vielle, Jayaram, & Riveros, 2019) to formalize a streaming enumeration problem. First,
we need to define what is an enumeration problem outside the stream setting, and we will
use a subtler definition than the one described in the preliminaries. Let €2 be an alphabet.
An enumeration problem is a relation R C (Q* x Q*) x Q*. For each pair ((¢,x),y) € R
we view (¢, x) as the input of the problem and y as a possible output for (g, x). Further-
more, we call ¢ the query and x the data. This separation allows for a fine-grained analysis
of the query complexity and data complexity of the problem. For an instance (¢, z) we

define the set [¢] z(«) = {y | ((¢,2),y) € R} of all outputs of evaluating g over z.

A streaming enumeration problem is an extension of an enumeration problem R where
the input is a pair (¢, S) such that S is an infinite sequence of elements in (2. We identify
two ways of extending an enumeration problem R that differ in the output sets that are

desired at each position in the stream:

(i) The streaming full-enumeration problem for R is one where the objective is to
enumerate the set [¢] ,(S[1, n]) at each position n > 1.
(i1) A streaming A-enumeration problem for R is one where the objective is to enu-

merate the set [[q]]ﬁ(S[l, n]) = [¢] x(S[L,n]) \ U,-, [¢] z(S[1,1]) at each posi-

tionn > 1.

These versions give us two different ways of returning the outputs. Both notions have been
studied previously in the context of incremental view maintenance (Chirkova & Yang,
2012) and more recently, for dynamic query evaluation (Idris, Ugarte, & Vansummeren,

2017; Berkholz, Keppeler, & Schweikardt, 2017). For the sake of simplification, in the

25

following, we provide all definitions for the full-enumeration scenario. Note that all defi-

nitions can be extended to A-enumeration by changing [¢] 5 to [[q]]g.

We now turn to our efficiency notion for solving a streaming enumeration problem
like the above. Let f: N — N be a function. We say that £ is a streaming evaluation
algorithm for R with f-update-time if £ operates in the following way: it receives a query
q and reads the stream S by calling the yie1dS method sequentially. After the n-th call

to yieldsS, the algorithm processes the n-th data symbol in two phases:

o In the first phase, called the update phase, the algorithm updates a data structure
D with the read symbol, and the time spent is bounded by O(f(|q|)).

e The second phase, called the enumeration phase, occurs immediately after each
update phase and outputs [¢] ,(S[1,n]) using D. During this phase the algo-
rithm: (1) writes #y1#ys# - - - #ym# to the output registers where # is a dis-
tinct separator symbol not contained in €2, and y1, ys, . . ., Y, 1S an enumeration
(without repetitions) of the set [¢] ,(S[1,n]), (2) it writes the first # as soon as
the enumeration phase starts, and (3) it stops immediately after writing the last

#.

The purpose of separating £’s operation into an update and enumeration phase is to
make an output-sensitive analysis of £’s complexity. Moreover, from a user perspec-
tive, this separation allows running the enumeration phase without interrupting the update
phase. That is, the user could execute the enumeration phase in a separate machine, and

its running time only depends on how many outputs she wants to enumerate.

We omit the time analysis of the enumeration phase and the definition of delay as it

was included in Section 2.3.

As the last ingredient, we define how to measure the memory space of a streaming
evaluation. Note that after the n-th call a streaming evaluation algorithm with f-update-

time will necessarily use at most O(n - f(|q|)) space. As a refinement of this bound, we

26

say that this algorithm uses g-space over a query ¢ and stream S if the number of bits used

by it after the n-th call is in O(g(|¢|, S[1,n])).

Given a streaming enumeration problem, we say that it can be solved with update-time
f, output-linear delay, and in g-space if an algorithm such as the one described above ex-
ists. For A-enumeration, the notion of streaming evaluation algorithm also applies, even
though it could be the case that one can find such an algorithm for full-enumeration but
not for A-enumeration, and vice versa. To finish, we would like to remark that the enu-
meration problem and solutions provided here are a formal refinement of the algorithmic
notions proposed in the literature of streaming evaluation (Gauwin, Niehren, & Tison,
2009b), dynamic query evaluation (Berkholz et al., 2017; Idris et al., 2017), and complex
event processing (Grez, Riveros, & Ugarte, 2019; Grez & Riveros, 2020).

3.3. Visibly pushdown annotators

In this section, we present the definition of visibly pushdown annotators (VPAnn),
which are an extension of visibly pushdown automata to produce outputs. We use VPAnn
as our computational model to represent queries with output. This model is general enough
to include the regular core of most query languages for nested documents, like XML or
JSON, whose expressive power is included in Monadic Second Order logic (MSO) (see
next section for a discussion). In the following, we present the VPAnn model and provide

some examples.

A visibly pushdown annotator (VPAnn) is a tuple 7= (Q, %, T, Q, A, I, F) where @,
3, I', I, and F are the same as for VPA, () is the output alphabet of annotations such that
YN (X xQ)=10,and:

A C Qx(ZUExQ))xQxT U

Qx (ZU(EXxQ)xI'xQ U

RQx (Z'U(E'xQ)xQ

27

is the transition relation. A symbol s € XU X~ U X! is an input symbol that the machine
reads and s-€ (2 is an annotation symbol that the machine produces. Intuitively, the second
component of each transition in A decides non-deterministically whether the machine
reads and annotates an input symbol (i.e., > x () or just reads an input symbol without

annotating it (i.e., 2).

A run p of T over a well-nested word w = sys9---5, € X°*7 is a sequence of the

form:

b b bn
pP= (91,01) — (C]2,U2) . (qn+170n+1)

where ¢; € Q, 0; € I'*, ¢ € I, 01 = ¢, and either b; = s; or b; = (s;, &) for some 5-€ €2,

for every i € [1,n]. In addition, the following holds for every i € [1, n]:

(i) if b; € XU (2% Q), then (g;, bs, ¢iv1,7) € A forsome v € T and 0,41 = o3,
(i) if b; € 3” U (X7 x Q), then (g;, b;, 7, ¢i+1) € A for some v € I and 0; = voy41,
and

(111) if bl € YU (E‘ X Q), then (piabi7Qi+l) € Aand O; = 0j41-

We call a pair (g;, 0;) a configuration of p. We say that the run is accepting if q,.1 € F.

Regarding the output of an accepting run p like above, we define the output of p as:
out(p) = out(by,1)-...-out(b,,n)

where out((s;,8),7) = (5;4) when b; = (s;,8) and out(s;,7) = ¢ when b; = s;. Then,

given a VPAnn 7 and a w € X7, we define the set [7](w) of all outputs of T over w as:

[7T](w) = {out(p) | pis an accepting run of 7 over w}.

As is usual with automata, VPAnn are depicted as directed graphs. We represent an
open transition (x, <s, 5;y,y) by an edge from state x to state y with the label <s/7 : 55 a
close transition (z, s>, &;y,y) with the label <s,~ : 5; and a neutral transition (z, s, 5; y

with the label s : o If the transition is non-annotating (e.g., (z, <s, y,y)), we omit the *: &

28

</X

Y={<h{>40), Q@={»q}, I'={XY}

Q=A{pa,r}, I={p}, F=A{r} <JY :p >/Y <1
A ={(p,<,p,X), (p,>X,p)

(p E<, >),q,Y), (a,<,9,X), (a,>,X,q)

>, <), 7r), (r,<,r, X), (r,>,X,r)}

7

Figure 3.1. An example of a VPAnn 7 that marks all pairs of positions that
correspond to matching brackets.

Example 3.1. Consider the VPAnn T depicted in Figure 3.1. On the left side is its

formal definition and on the right is its graphical representation.

As an important note regarding the notation, this VPAnn in particular uses names
P, d,r (sans serif) for its states. These are not to be confused with the symbols p, q,r that

we use elsewhere for referring to a generic state in an arbitrary VPAnn.

The VPAnn T in Figure 3.1 receives a well-nested word over the input alphabet 3. =
({<},{>},0) and marks all pairs of positions that correspond to matching brackets. For

the sake of illustration, below we show the three accepting runs of T over the word w =

<<><>>,
<, > >4
P,€(<)qY()q,XY()q,Y i qXY—»> qY—>(>)r€
p,€ p, X = q, YX r, X r, XX r, X re
< < > (<,>) (>, <) >
p,€ p, X p, XX p, X q,YX r, X r,e

Then the reader can check that the output set of running T over w is:

[7](w) = {(>, 1)(«,6), (>,2)(<,3), (>4)(<,5) }.

Strictly speaking, our definition of VPAnn is richer than the one studied in (Filiot et
al., 2018). In our definition of VPAnn each output element is a tuple (o;7) where o-is
the symbol and ¢ is the output position, where for a standard VPT (Filiot et al., 2018) an
output element is just the symbol &. The extension presented here is indeed important for

practical applications like in document spanners (Florenzano et al., 2020; Amarilli et al.,

29

\g
@

$</C $</C 2</C z /C </

<a/A éd}/B Léle ¢ a>, A é

Figure 3.2. A VPAnn implementing the CPath query Q = //a/b. Its
input alphabet consists of the sets X< and >~ of open and closed tags, re-
spectively, {A, B, C} is the stack alphabet, and {]} is the output alphabet.

2019a) or in XML query evaluation (Bar-Yossef, Fontoura, & Josifovski, 2005; Shalem &

Bar-Yossef, 2008), as we show next.

Expressiveness of visibly pushdown annotators. How useful are VPAnn as a computa-
tional model for representing queries over nested words? To motivate this question, recall
the XPath query Q = //a/b presented in the introduction, whose outputs are all pairs
of nested tags and inside some nested tags <a> and . In Figure 3.2 we
show a VPAnn equivalent to Q. The VPAnn processes an XML document by moving
non-deterministically from gy to ¢; when it reads an open tag <a> and then to ¢, when it
reads an open tag and marks it with |. Then it moves to q3 when it reads the match-
ing close tag marking it with |, and it moves to an accepting state when it reads
the corresponding close tag . The reader can easily check that this VPAnn marks all

pairs of b-tags satisfying Q.

As in the previous example, one could ask whether VPAnn can encode every XPath
query or any other query language over nested documents (e.g., JSON). To answer this
question, we study the expressiveness of VPAnn by comparing it to MSO over nested
words. We show that VPAnn is equally expressive to MSO over nested words with open
MSO variables. Given that fragments of query languages over nested documents (e.g.,
navigational XPath (ten Cate & Marx, 2007), JSON Navigational Logic (Bourhis, Reutter,
& Vrgoc, 2020)) are included in MSO logics, this result shows that VPAnn is a useful

computational model to express query evaluation problems over nested documents. We

30

continue this section by defining MSO over nested words in order to state and prove the

main result of the chapter.

In (Alur & Madhusudan, 2004b), it was shown that VPA describe the same class of
queries as MSO over nested words, called MSOpaicn. Formally, fix a structured alphabet

Y and let w € X°*7 be a word of length n. We encode w as a logic structure:
(A, <, {Pu}acs, match)

where A = [1, n] is the domain, < is the total order over [1, n}, each P, is a unary predicate
encoding the appearance of letter a € X such that P, = {i | w[i] = a}, and match is a
binary relation over [1,7n] that corresponds to the matching relation of open and close
symbols. Formally, for every i, j € A, match(i, j) is true if, and only if, w[i] is an open
symbol and w|j] is its matching close symbol. Then, an MSO matc formula ¢ over ¥ is

given by the following syntax:
= Pyr) | € X [<y | match(z,y) | ~¢ | ¢V | Jzp [IXp

where a € X, x and y are first-order variables and X is a monadic second order (MSO)
variable. We will use Z as a shorthand for a list of first-order variables z, ..., 2, and X
as a shorthand for a list of MSO variables X7, ..., X,,. Then, we can write ¢(z, X) to
denote an MSOmaich formula ¢ where 7 and X are the free variables of . By some abuse
of notation, we will also use Z and X as sets and write Z U X to denote the union of Z and
X.

An assignment o for w is a function o: 7 U X — 27 such that |o(z)| = 1 for
every x € x. Here, we treat first-order variables as a special case of MSO variables. As
usual, we denote by dom(c) = Z U X the domain of the function o. Then we write
(w,0) = »(z, X) when o is an assignment over w, dom(c) = 7 U X, and w satisfies

o(z, X) when each variable in £UX is instantiated by o (see (Libkin, 2004) for the formal

31

semantics of MSO). Given a formula ¢(Z, X), we define:

[el(w) = {o | (w,0) = p(z, X)}.

For the sake of simplification, from now on we will only use X to denote the free variables

of p(X) and use X € X for a first-order or monadic second-order variable.

Given an assignment ¢ over w, we can represent o as a sequence of annotations and
positions as follows. First, define the support of o, denoted by supp(c), as the set of
positions mentioned in o; formally, supp(c) = {i | 3X € dom(o) such thati € o(X)}.
Next, assume that supp(o) = {41, ..., %y} such thati; < i, for every j < m. Then, we

define the sequence encoding of o as:
enC(O') e (Xlail) (XQ,Z:Q) e (vazm)

such that X; = {X € dom(o) | i; € o(X)} for every j < m. In other words, we
represent o as an increasing sequence, where each position is labeled with the variables of

o where it belongs.

We can now precisely state the equivalence between VPAnn and queries defined by
MSO over nested words. Fix a structured alphabet ¥ and a set of MSO variables X. We
say that a VPAnn 7 with output alphabet 2% is equivalent to an MSOmaten formula o(X),
denoted by T = ¢, if, and only if, [T](w) = {enc(o) | o € [¢](w)} for every w € 3*~.
In other words, the outputs of 7 are equivalent to the satisfying assignments of ¢ encoded

as sequences.

PROPOSITION 3.1. For any MSOpmacn formula o(X) there exists a VPAnn T with

output alphabet 2% such that T = @, and conversely.

PROOF. The following proof is largely based on the proof of Theorem 4 in (Alur &
Madhusudan, 2004b). We start by showing how to convert a MSOpacn formula ¢(X)
into an equivalent VPAnn 7. For this, we can follow the exact same argument as the if

direction of the proof in (Alur & Madhusudan, 2004b) and assume we can obtain a VPA

32

A, over the input alphabet ¥¥ = © x 2¥ whose language is the set of words which
encode a valuation o of X along with a word w for which (w, o) = ¢(X). We define a
straightforward transformation from 4, to 7 as follows. Let ¢ be a transition in 4, and
let (a, V') be its input symbol with V' € 2X. If V # () the corresponding transition ¢’ in T~
is kept the same, except it has an input symbol a, and an output symbol V', and if V' = (),
then ¢’ is obtained by simply replacing (a, V') by a. One can easily check that 7 = ¢,

proving the first direction.

To prove the other direction, we can convert 7 into a VPA A with input alphabet ¥
in the opposite way and use the result of (Alur & Madhusudan, 2004b) itself to obtain a
MSOnaich formula with no free variables ¢’ over the same input alphabet. We replace any
instance of F,,v)() in ¢ by the expression Fy(z) A Axcy 2 € X A Axcqnipz & X to

obtain a formula ¢(.X) over X which proves the statement. O

We conclude that VPAnn has the same expressive power as MSO over nested words,
which implies that VPAnn can represent the navigational fragments of languages like
XPath and JSON Navigational Logic subsumed by MSO. In the next section, we comple-
ment this result by stating our main algorithmic results regarding the streaming evaluation
of VPAnn. Before that, we introduce a class of visibly pushdown annotators that will be

crucial for our algorithmic results.

Deterministic and unambiguous visibly pushdown annotators. We say that a VPAnn
T = (Q,%,T,Q,A,I,F) is input/output deterministic (I/O-deterministic for short) if
|I| =1 and A is a partial function of the form:
A C Qx(ZU((ExQ)—=QxT U
Qx (ZU(EXxQ)xI'-Q U

QX(E‘U(E‘XQ))%Q

33

Also, we say that T is input/output unambiguous (I/O-unambiguous for short) if for every
w € X7 and every € [T](w) there is exactly one accepting run p of T over w such

that 1 = out(p).

Notice that an I/O-deterministic VPAnn is also I/O-unambiguous. Intuitively, a VPAnn
is I/O-deterministic (I/O-unambiguous) if, given the input word and a sequence of annota-
tions, the automaton behaves in a deterministic (unambiguous, resp.) manner. The defini-
tion is in line with the notion of I/O-deterministic variable automata of (Florenzano et al.,
2020) and I/O-unambiguous is a generalization of this idea that is enough for the purpose

of our enumeration algorithm.

In the next result, we show that for every VPAnn 7 there exists an equivalent I/O-

deterministic VPAnn and, therefore, an equivalent I/O-unambiguous VPAnn.

PROPOSITION 3.2. For every VPAnn T there exists an I/O-deterministic VPAnn T' of
size O(219°ICN such that [T](w) = [T'](w) for every w € £*.

PROOF. Let T = (Q,%,I',Q,A, I, F). For the sake of presentation, assume that
A contains only transitions with an output symbol, the proof can be extended straightfor-
wardly to include transitions with no output symbol. We will construct an I/O-deterministic
VPAnn 7' = (Q', 2,17, Q, 5%, S;, F') as follows. Let Q' = 29%@ and [= 2@*I'*Q_ Let
Sr={(¢,q) | g€ I} andlet F' = {S | (p,q) € Sforsomep € [and g € F'}. Let 0 be

defined as follows:

e For <a € ¥ and o-€ Q, (5, <a,s) = (S',T), where:

T ={(p,7.9) | (p,p) € Sand (p,<a,;7,q) € A for some ¢ € Q},

S"={(¢,q) | (p,p’) € Sand (p', <a,5;7,q) € A for some p,p’ € Q and y € T'}

34

e Fora> € ¥ and 6-€ 2, 6(S,a>,5; T) = S" where, if T C Q x I x @, then:

S"={(p,q) | (p,v,p") € Tand (p',¢) € Sand (¢, a>,5;,7,q) € A

for some p’, ¢ € Q,v € '},
e Fora € ¥ and 6-€ , §(S,a,5) = S” where:
S'={(q,¢") | (¢,¢") € Sand (¢,a,5;¢") € A for some ¢ € Q}.

One can immediately check that this automaton is I/O-deterministic since the transition

relation is given as a partial function.

We will prove that 7 and 7" are equivalent by induction on well-nested words. To aid
our proof, we will introduce a couple of ideas. First, we extend the definition of a run to

include sequences that start on an arbitary configuration. Also, given a run

b b bn
p= (QhUl) = (Q2702) 2 (qn+170n+1>7

and a span [i, j), define a subrun of p as the subsequence

.o b; b; bi_
pli, 7)) = (@i, 03) =5 (i1, 0i1) — -+ = (g;,0;).

In this proof, we only consider subruns such that w[i, j) = ;5,41 ---sj_1 is a well-
nested word. A second definition we will use is that of a VPAnn with arbitrary initial
states. Formally, let ¢ € (). We define 7, as the VPAnn that simulates 7 by starting on
the configuration (¢, £). Note that for a run p = (¢, 01) LI R (Gn+1, Ony1) of T over
w = S - -+ s, and a well-nested span [¢, j), the subrun p[i, j) is one of the runs of 7, over

w(i, 7) modulo o;, which is present in all of the stacks in p as a common suffix.

We shall prove first that [7](w) C [T'](w) for every well-nested word w. This is
done with the help of the following result.

35

CLAIM 3.1. For a well-nested word w, output i, states p,q C @, and a set S that
contains (p, q), if there is a run of T, over w with output 1 such that its last state is ¢/, the

(only) run of T's over w with output y ends in a state S’ which contains (p, ().

PROOF. We will prove the claim by induction on w. If w = ¢, the proof is trivial since

qg=¢.Ifw=a € X! the proof follows straightforwardly from the construction of 4.

If w,v € X7, let p,q € Q, let S be a set that contains (p, ¢), and let p be a run of
T, over wv with output 4 - x, which ends in a state ¢, for some ;1 and . Our goal is
to prove that the run p’ of 7' over w - v with output x - x as output ends in a state that
contains (p, ¢’'). Letn = |w|, m = |v|, and let ¢* be the last state of the subrun p[1,n+ 1).
Consider as well p[n + 1,n 4+ m + 1), which is a run of 7 » over v with output « that ends
in ¢'. From the hypothesis two conditions follow: (1) In the run of 7' over w with output
u, the last state S’ contains (p, ¢*), and (2) in the run of 7', over v that has ~ as output
the last state contains (p, ¢’). It can be seen that p’ is the concatenation of these two runs,

so this proves the claim.

Ifwe X, <a € X5, b> € ¥7, letp, g € Q, S be aset that contains (p, q), and let p be
arun of 7, over <awb> with output (57, 1)p(6, n 4+ 2) for some p € QF, oy, 0, € 2, Where
n = |w|. Let q,qo, ..., qni2, Gnrs be the states of p in order. Our goal is to prove that
the run p’ of T’ over <awb> with output (51, 1)u(55, 7 + 2) ends in a state that contains
(P, qn+3)- Let (go,) be the second configuration of p. This implies that (g, <a, 8, g2,7) €
A and (¢py2,b>,65,7,Gnr3) € A. Let S” and T be such that 6(S,<a,0;) = (5,7).
Therefore, (g2,q2) € S’ and (p,,q2) € T. Consider the subrun p[2,n + 2), which can
be found as a run of 7,, over w with output 1, modulo the stack suffix v, and note that
it ends in ¢,.o. Since (ga,q2) € S’, from the hypothesis it follows that the run of 77,
over w with output i ends in a state S” that contains (g2, ¢,+2). This run starts on the
configuration (S5, ¢) and ends in (S”,¢), so a run on the same automaton that starts on

(8", T) and reads the same symbols will end in (S”,7T"), which is the case for the subrun

36

p'[2,n + 2). Therefore, the construction of ¢ implies that (p, ¢,,+3) is contained in the last

state of p/, which proves the claim. U

Now let w be a well-nested word and let € [T](w). Let p be some accepting run of
T over w with output x, and let p* € I be its first state and ¢* € F' its ending state. Clearly,
p is also a run of 7,,. Now, let us use the claim over the set S = S; and states p = ¢ = p*,
using the fact that (p, p) € S;. We obtain that the run of 77 over w with output y ends

in a state S” which contains (p, ¢) and so, is it accepting. Since T’s, = 7", this proves that

[T1(w) < [T"(w).

To prove that [7'](w) C [T](w) we use a similar result:

CLAIM 3.2. For a well-nested word w, output y, states q,p,q C @Q, and a set S that
contains (p, q), if the run of T's over w with output |1 ends on a state S’ that contains

(p,q'), then there is a run of T, over w with output v such that its last state is q'.

PROOF. We will prove the claim by induction on w. If w = ¢, the proof is trivial since

qg=¢.Ifw=a e X' the proof follows straightforwardly from the construction of 9.

If w,v € X7, let p,q, ¢ € @, let S be a set that contains (p, ¢), and let p be the run
of T’ over w - v with output 1 - &, for some 4 and x, which ends in a state S’ that contains
(p,q'). Our goal is to prove that there is a run p’ of T, over w - v with output x - x such
that its last state is ¢’. Let n = |w|, m = |v|, and let S* be the last state of the subrun
p[1,n + 1). Consider as well p[n + 1,7 4+ m + 1), which is also a run of 7. over v with
output « that ends in S”. From the construction of ¢, it is clear that if a non-empty state S’
follows from S in a run of 77, then S is not empty. Let (p, ¢*) € S*. From the hypothesis
two conditions follow: (1) there is a run p; of 7, over w with output ;. such that its last
state is ¢ (2) there is a run po of 7, over v with output such that its last state is ¢’. We

then construct p’ by concatenating p; and p, which ends in ¢/, and this proves the claim.

Ifwe X, <a €35, b>€ 3, letp,q,q¢ € Q, S be aset that contains (p, ¢), and let

p be the run of 7’y over <awb> with output (61, 1)1(6, n + 2) for some p and oy, 6, € €2,

37

where n = |w|. Let S, S, ..., S, 2, Sn3 be the states of p in order, and suppose there is a
pair (p, ¢') € S,+3. Our goal is to prove that there is a run p’ of T, over <awb> with output
(51, 1)pu(55,m + 2) that ends in ¢'. Let (S5, T") be the second configuration of p. From the
construction of §, there exist ¢z, ¢, 12 € @ and vy € I" such that (g, 12, b>, 65,7, ui3) € A,
(p,7,q2) € T and (g2, Gni2) € Sni2. Since w is well-nested, this 7" could only have been
pushed after a step in the run with label (<a, 5;), which implies that (¢, <a, &, g2,7) € A.
This, in turn, means that (g2, g2) € Sa. Let us consider the subrun p[2, n + 2), which is
also a run of 7', over w with output y that ends in .S,, ., modulo the common stack suffix
T. We now have that (g2, q2) € S and (g2, gni2) € Spio, and so, from the hypothesis
it follows that there is a run p” of T, over w with output £ and ending state ¢,,4>. In
a similar fashion as in the previous claim, we modify the run slightly to obtain one that
starts and ends on the stack . This new run can be easily extended with the transitions
(q,<a,51,92,7), (Gnt2,b>, 65,7, ¢nt3) € A, and as a result, we obtain a run p’ of 7, that

fulfils the conditions of the claim. O

Now, let w be a well nested word and let 1 € [T'](w). Let p be a run of 7' over
w with output x that ends in accepting state F', and let p* € [and ¢* € F' be such that
(p*,p*) € I and (p*,¢*) € F. Note that 7" = T’ , and by using the previous claim with
p=q =p*and ¢’ = ¢*, we obtain that there is a run of 7,- over w with output y that ends

in state in ¢*. Clearly, this is also a run of 7, so we obtain that ;1 € [7](w). This proves

that [7"](w) C [T](w).

We conclude that [7](w) = [T'](w) for every well-nested word w. O

3.4. Results and discussion

In this chapter, we are interested in the following streaming enumeration problem for

a class C of VPAnn (e.g. I/O-deterministic VPAnn).

38

Problem: ENUMVPANNIC]
Input: A VPAnn 7 € Candw € ¥
Output: Enumerate [7](w)

The main result of the chapter is that for the class of I/O-unambiguous VPAnn, the stream-

ing full-enumeration version of this problem can be solved efficiently.

Theorem 3.1. The streaming full-enumeration problem of ENUMVPANN for I/O-
unambiguous VPAnn can be solved with update-time O(|Q|*|A|) and output-linear delay.
For the class of all VPAnn, it can be solved with update-time O(Q'Q‘Q‘A‘) and output-

linear delay.

The general case is basically a consequence of Proposition 3.2 and the enumeration
algorithm for I/O-unambiguous VPAnn. For both cases, if the VPAnn is fixed (i.e., in data
complexity), then the update-time of the streaming algorithm is constant. In Sections 3.5
and 3.6, we present this algorithm. For the rest of this section, we discuss some further

details of this result.

A-enumeration. The natural question is how we move from full-enumeration to A-
enumeration. In fact, we can have A-enumeration with a slight loss of efficiency by solv-
ing the full-enumeration problem. Specifically, we can show that for any I[/O-unambiguous
VPAnn 7 there is an I/O-unambiguous VPAnn 7" of linear size with respect to | 7] that only
outputs new results at each position. Then combining this construction with the algorithm

of Theorem 3.1, we derive the following algorithm for A-enumeration of VPAnn.

Theorem 3.2. The streaming A-enumeration problem of ENUMVPANN for I/O-unambiguous
VPAnn can be solved with update-time O(|Q|?|A|) and output-linear delay. For the gen-

eral class of VPAnn, it can be solved with update-time O(Z‘QF'A') and output-linear delay.

PROOF. The proof of the theorem is a consequence of Theorem 3.1 and the following

lemma.

39

Lemma 3.1. For every I/O-unambiguous VPAnn T there exists an I/O-unambiguous
VPAnn T such that [T'](w) = [T](w) \ U<, [T](w[L,1]) for every w € £=*". Further-

more, the size of T is linear in the size of T.

Let 7= (Q,%,',Q,A, I, F) be an I/O-unambiguous VPAnn. We construct a VPAnn
=(Q,2, [, QA I, F')suchthat Q' = Q x {1,2}, I' =1 x {1}, F' = F' x {1} and

A’ is as follows:
A" ={((p,1),<a,55(¢,1),7), ((p,2), <a, 55 (¢,1),7) | (p,<a,0;q,7) € A} U

{((p, 1), <a, (q,1),7), ((p,2),<a, (q,2),7) | (p,<a,q,7) € A wherep ¢ F'} U

{((p, 1), <a,(q,2),7), ((p,2),<a, (q,2),7) | (p,<a,q,7) € A wherep € F} U

{((p, 1), a>,7,(q,2)), ((p,2), a>,7,(¢,2)) | (p,a>,7,q) € A wherep € F} U
{((p,1),a,5:(¢,1)), ((p, 2),a,5; (¢, 1)) | (p,a,5:q) € A} U
{(p,1),a,(q,1)),((p,2),a,(q,2)) | (p,<a,q) € A wherep & F'} U

(
(
(
(
{((p,1),a>,7,(q,1)),((p, 2), 05,7, (¢,2)) | (p,a>,7,q) € A wherep & F'} U
(
(
(
{((p,1),a,(¢,2)),((p, 2),0,(¢,2)) | (p,<a,q) € A wherep € F}

The idea behind this construction is to separate the VPAnn in two halves. Each run
starts in the first half (marked 1) and once it reaches a final state, it changes into the second
half (marked 2). The run then stays on the second half until it sees an output symbol that

extends the current output, upon which it returns to the first half. It is straightforward to

see that [7](w) = [T](w) \ U;<ju [TT(w[1, 7).

To show that 7" is I/O-unambiguous, consider a w € X<*7. Let u € [T'](w) and
consider two accepting runs p; and po such that out(p;) = out(py) = p. Let us build
a run p of T over w by replacing each state (¢, k) in p; by g. Note that starting from p,

renders the same run because they have the same output and 7 is I/O-unambiguous. This

40

implies that p; = ((q1,01),01) 2 -+ 2% ((Gs1, bus1), Ons1) and po = (g1, k1), 01) 2

LN ((gns1, kny1), ons1) for some g;, o; and b;. Note that ¢, = k; = 1, and suppose
there is some ¢ for which ¢; = k; and ¢;;; # k;;1. This is immediately false from the
construction above since from any transition of A that is from state p, only two transitions
are included in A’: one from (p, 1) and one from (p, 2). This implies that p; = ps so T’ is

I/O-unambiguous. U

We could have considered a more general definition of VPAnn to produce outputs
for prefix-nested words. This would be desirable for having some sort of earliest query
answering (Gauwin et al., 2009b) which is important in practical scenarios. We remark
that the algorithm of Theorem 3.1 can be extended for this case at the cost of making the
presentation more complicated. For the sake of presentation, we give a brief idea of how

to handle this extension after the main part of Section 3.6.

Space lower bounds of evaluating a VPAnn. This last subsection deals with the space
used by the streaming evaluation algorithm of Theorem 3.1. Indeed, this algorithm could
use linear space in the worst case. In the following, we explore some lower bounds in
the space needed by any algorithm and show that this bound is tight for a certain type of
VPAnn.

To study the minimum number of bits needed to solve ENUMVPANN we need to in-
troduce some definitions. Fix a VPAnn 7 and w € prefix(X<*). Let outputweight(7, w)
be the number of positions less than |w| that appear in some output of [7](w - w’) for
some w - w’ € ¥°*”. Furthermore, for a well-nested word u let depth(u) be the maximum
number of nesting pairs inside «. Formally, depth(u) = 0 for u € X!”, depth(uy - uy) =
max{depth(u;), depth(us)}, and depth(<a-u-b>) = depth(u)+ 1. For w € prefix(32<*"),
we define depth(w) = min{depth(w’) | w’ € ¥*” and w is a prefix of w'}. Below, we
provide some worst-case space lower bounds for ENUMVPANN that are dependent on

outputweight (7, w) and depth(w).

41

PROPOSITION 3.3. (a) There exists a VPAnn Ty such that every streaming evaluation
algorithm for ENUMVPANN with input T, and S requires)(depth(S[1, n])) bits of space.
(b) There exists a VPAnn T such that every streaming evaluation algorithm for ENUM V-

PANN with input Ty and S requires Q)(outputweight(72, S[1,n])) bits of space.

PROOF. (a) The existence and lower bound for 7; is a corollary of Theorem 4.5
in (Bar-Yossef et al., 2007). The proof of this result implies that for the XPath query
() = //a[b and c|, any streaming algorithm that verifies if an XML document matches
() (the problem BOOLEVAL() and any integer r > 1, there exists a document of depth at
most + C, where C' is a constant value, on which the algorithm requires () bits of

space.

The VPAnn 77 is shown in Figure 3.3a. It can simulate the query () for a direct
mapping v of the documents that are constructed in (Bar-Yossef et al., 2007), where
v({a)) = <a, v({/a)) = a>, v({b/)) = b, and v({c/)) = c. Note that for any well-nested
document w the set [7](w) is either empty or {¢}. Now suppose there is a streaming
evaluation algorithm &£ that solves ENUMVPANN. We can solve BOOLEVAL(by receiv-
ing an XML stream S, and running £ with input 7 while applying the mapping v to each
character. Let w be the resulting string. At the end of the stream, we enumerate the set
[7](w) and it will enumerate the output ¢ iff S matches). We conclude that £ runs in

Q(r) space.

(b) The existence and lower bound for 75 uses the main ideas of the proof of Theorem
1 in (Bar-Yossef et al., 2005). Here, the authors describe a set-computing communication
complexity problem. In the problem P, Alice and Bob compute a two-argument function
p(+,), defined as follows. Alice’s input is a subset A C {1,...,k}, Bob’s input is a bit
g € {0,1}, and p(A, B) is defined to be A, if 5 = 1, and () otherwise. Proposition 1
in (Bar-Yossef et al., 2005) proves that the one-way communication complexity of P is

at least k.

42

M&&&ﬂé G0

(a) 7'1 (b) T2

Figure 3.3. VPAnn used in the proof of Proposition 3.3. On 77, a loop
over a node p labeled by * represents the four transitions (p, <a,p, X),

(p,a>, X, p). (p, b, p) and (p, c, p).

Let T, = (Q,%,T,Q,A,I,F) be a VPAnn such that X' = {a,b,$}, Q = {x},
and @), A, I, F be as presented in Figure 3.3b. Let w € (X')* be a word such that
i1 <ig < ...<1i < |wl|are all positions of w where wli;] = b for every ¢ < k. Then one
can check that 75 defines the following function:

172l () = {(x,41) ... (x,i,)} ifwendsin$

0 otherwise.

Consider an arbitrary algorithm £ that solves ENUMVPANN with input 75. We will
now present a reduction that creates a protocol for P which makes use of the algorithm
E. Here, Alice receives the set A and generates a word w of size k such that w[i| = b
if i € A and w|i] = a otherwise. Alice then executes £ on input 75 and w as the first &
characters of a stream. She sends the state of the algorithm to Bob, who receives the bit
B, and does the following: If 5 = 1 he continues running & as if the last character of the
input was $. If 5 = 0, he stops executing £ immediately. In either case, the output given
by & contains all the information necessary to compute the set p(A,), so the reduction
is correct. This proves that £ requires at least £ bits for an input of size less than £, and
so &£ for any n > 1, requires at least n bits of space in a worst-case stream S, which is in

Q(outputweight(72, S[1,n])). O

43

In (Bar-Yossef et al., 2005, 2007), the authors provide lower bounds on the amount of
space needed for evaluating XPath in terms of the nesting and the concurrency (see (Bar-
Yossef et al., 2005) for a definition). One can show that the output weight of 7 and w is
always above the concurrency of 7 and w. Despite this, one can check that both notions

coincide for the space lower bound given in Proposition 3.3.

The previous results show that, in the worst case, any streaming evaluation algorithm
for VPAnn will require space of at least the depth of the document or the output weight.
To show that Theorem 3.1 is optimal in the worst-case, we need to consider a further
assumption of our VPAnn. We say that a VPAnn 7 is trimmed (Caralp, Reynier, & Talbot,
2015) if for every w € prefix(X<*”) and every (partial) run p of T over w, there exists w’
and an accepting run p’ of T over w - w’ such that p is a prefix of p’. This notion is the
analog of trimmed non-deterministic automata. Similarly to Proposition 3.2, one can show
that for every VPAnn 7 there exists a trimmed I/O-deterministic VPAnn 7" equivalent to
T (i.e., by extending the construction in (Caralp et al., 2015) to VPAnn). The next result
shows that, if the input to ENUMVPANN is a trimmed [/O-unambiguous VPAnn, then the
memory footprint is at most the maximum between the depth and output weight of the

input.

PROPOSITION 3.4. The streaming enumeration problem of ENUMVPANN for the

),

output-linear delay, and

O(max{depth(S[1,n]), outputweight(T, S[1,n])} x |Q|*|Al|) space for every stream S.

class of trimmed I/O-unambiguous VPAnn can be solved with update-time O(|Q|*|A

PROOF. Before reading this proof, it is important to note that the argument assumes
the understanding of Algorithm 2. Furthermore, this proof uses the notation introduce in

Section 3.6.

First of all, note that the time bounds are implied by Theorem 3.1, so we will restrict to
prove the space bounds. Algorithm 2 has an update phase and an enumeration phase, and

the enumeration phase only processes the data structure that was built on the update phase,

44

using at most linear extra space, as is explained in Section 3.5. As such, we will prove that
Algorithm 2 on input (7, w) uses O((depth(w) + outputweight(7,w)) x |Q|*|Al) space
at every point in its execution, which implies the statement of the proposition, where

w = S[1,n| for some stream S and n.

As it was explained in Section 3.6, Algorithm 2 uses a hash table S, and a stack 7'
that stores hash tables. The size of the stack at each point is bounded depth(w), and the
size of each hash table is bounded by |Q|*|T'|, so the size of S and T' combined is in
O(depth(w)|Q|?|A|). The rest of the space used is related to the e-ECS D, which we will
now bound by O(outputweight(7, w[1, k])|Q[*|Al) at each step k.

For every step k of the algorithm, consider an -ECS D™ which is composed solely
of the nodes that are reachable from of the ones stored in S¥*, or the ones stored in some
hash table in 7%. A simple induction argument on k shows that the rest of the nodes
in D can be discarded with no effect over the correctness of the algorithm, so they are
not considered in the memory used by it. Therefore, proving that at each step |DV™|

O(outputweight (T, w[1, k])|Q|*|A|) is enough to complete the proof.

Let Z be the set of positions less than k that appear in some output of [7](w[1, k] - w’)
for some w - w’ € prefix(X<*>). We now refer to Lemma 3.2 since it implies that for each
node v stored in S* or the topmost hash table in 7%, each sequence in £.p(v) corresponds
to at least one valid run of 7 over w[1, k|, and since 7 is trimmed, each one of these runs
is part of an accepting run of 7 over w1, k] - w’, for some word w’. Therefore, each of the
positions that appear in some of these sets is in Z. Furthermore, we can use this lemma to
characterize the positions in the rest of the hash tables in 7", since appending any close
symbol a> to w1, k] will make the algorithm pop an element from 7', which will make the
next hash table the topmost. This argument can be extended to any of the hash tables in 7%,
so in all, Lemma 3.2 implies that all of the positions that appear in some non-empty leaf in
D}c”m are in Z. Theorem 3.1 implies that the set of these positions corresponds exactly to
7, since if there was any position in Z missing from the leaves in D, the algorithm would

not be correct.

45

Lastly, we will show that |DI'™| < |Z| x |Q|*|A| x d, where d is a constant. Towards
this goal, we will bound the number of e-leaves, non-empty leaves, and product nodes
by O(|Z| x |Q|?|A|) independently. Union nodes can be bounded by counting the other
types of nodes: The only cases where a union node is created are (1) in line 38, only after
a product node had been created, (2) during the creation of a product node (as described
in Theorem 3.4), (3) in line 50, but only whenever one of the previous lines had created
either a product node or a non-empty leaf node, and (4) in line 16, which only happens
once at the end of the update phase, and iterates by nodes in S. Thus, the number of
union nodes created at this for loop at most |D'™|. The number of £-nodes is at most one,
owing to Theorem 3.4, since its proof shows that at the end of step &, each of the nodes
in D™ is c-safe. The number of non-empty leaves can be straightforwardly shown to be
O(|Z| x |Q|*|Al) since each of these leaves was introduced in some step in Z, and in each

one of these steps, the number of operations that the algorithm does is in O(|Q[?|A|).

To show a bound over the number of product nodes, consider a slight modification of
Algorithm 2: product nodes that are created in line 48 are labeled with the step £ in which
the algorithm is at the moment. Now, for a set of nodes A let Df{fm be the e-ECS that is
obtained by removing all of the nodes that are not reachable from some node in A from
D. Let T4 be the set of positions that appear in some non-empty leaf node in D%™, and let
P4 be the set of step labels that appear in some product node in D™ excluding the steps
in Z4. Also, let V. be the the set of nodes in D}C“m. We will show by induction on k that
|Pa| < |Za| — 1 forany A C Vj, which contains at least one node that is not an e-node.
Consider any set A C V}. The first observation we make here is that we can partition the
nodes in A to a collection { Ay} of sets of nodes depending on the hash table H they are
reachable from, given that they are in D};‘m. Let @4 = P4 UZ,4. From Lemma 3.2 we
get that for two different sets Ay, and Ay, in the collection, the sets Qp, and Qp, are
disjoint. Therefore, in step k, if the algorithm enters CLOSESTEP, we only need to focus
on the set Ag, and if the algorithm enters OPENSTEP on the set and A7« (note that in this

case, S* is composed only of e-nodes). The rest of the hash tables were reachable on a

previous step, so the inequality can be reached by adding up the inequalities that held in

46

those steps. First, note that if none of the product nodes in A were created in step k, then
we can consider the set B of nodes reachable from A that were created in a previous step
and notice that P, = P and Zg C 1,4, so the statement follows since B C V,,_;. Also,
note that if the algorithm in step £ enters OPENSTEP, all of the product nodes created in
this step are directly connected to a non-¢ leaf created in this same step, so the statement
also follows. From this point on, we can assume that the algorithm enters CLOSESTEP on
step k, and all of the nodes in A are reachable from some node in .S k and there is at least
one product node in A that was created in step k. Let P be the set of product nodes in A
that were created on step k. Consider the span currlevel(k) = [j, k). The prod operation
in line 48 either creates a new product node, or makes v reference a node that already
existed in S*~! or the topmost table in 7. Furthermore, if a product node is created in
line 48, then Theorem 3.4 tells us that it must be connected to a node in S*~! that is not an
e-node, and to a node in the topmost table in TV that is also not an e-node. Consider now
the set of nodes B that is made up of (1) nodes in A that are reachable from S*~! and (2)
nodes in S*! that are connected to a product node in P. Consider also the set of nodes
C that is made up of (1) nodes in A that are reachable from the topmost table in 77, and
nodes in the topmost table in 7V that are connected to a node in P. Note that both sets
B and C contain a non-¢ node, and are composed of nodes created in a previous step, so
assume that |Pg| < |Zp| — 1 and that |Pc| < |Z¢| — 1. It can be seen that every node in
Df{lim is either in B, C, or was created on step k, so we get that P4 = P U P U {k} and
T4 O IpUZs. From Lemma 3.2 we get that Qp and Q¢ are disjoint, and putting these
facts to together gives us that [P4| = |Pp| + |Pc| + 1 < |Zp| + |Zc| — 1 < |Z4| — 1.

Having proven this statement, we can deduce that the number of product nodes in D™
isin O(|Z] x |Q|?*|Al) since the number of steps where they are created is bounded by |Z].
Therefore, |[D'™| < |Z| x |Q[*|A| x d, for some constant d. This concludes the proof.

O O

Unfortunately, the algorithm provided in Theorem 3.1 is not instance optimal, in the

sense of using the lowest number of bits needed for each specific VPAnn. Specifically,

47

there exist VPAnn for which only logarithmic space in outputweight(7, w) is enough for
any stream S. For example, let 5-be any output symbol and consider a VPAnn 7T for
which the output set is [7T](w) = {(557) | 1 < ¢ < |wl|} if the last symbol in w is $
and the empty set otherwise. Clearly, the output weight of any w with respect to 7 is
linear in |w|. However, one could design a streaming evaluation algorithm that has only a
counter that stores the length of the input so far and produces the correct output set after
reading the last symbol in w. The enumeration phase can easily be done with output-
linear delay (i.e., by counting from 1 to |w|). Furthermore, note that an instance optimal
algorithm for the streaming enumeration problem of VPAnn will imply a solution to the
weak evaluation problem, stated by Segoufin and Vianu (Segoufin & Vianu, 2002), which
is an open problem in the area (see (Barloy, Murlak, & Paperman, 2021) for some recent
results). We leave the study of instance optimal streaming evaluation algorithms for future

work.

3.5. Enumerable compact sets: a data structure for output-linear delay

This section presents a data structure, called Enumerable Compact Set with Shifts
(Shift-ECS), which is the cornerstone of our enumeration algorithm for VPAnn. This data
structure is strongly inspired by the work in (Amarilli et al., 2017, 2019a). Indeed, Shift-
ECS can be considered a refinement of the d-DNNF circuits used in (Amarilli et al., 2017)
or of the set circuits used in (Amarilli et al., 2019a). Several papers (Olteanu & Zavodny,
2015; Amarilli et al., 2017; Amarilli, Bourhis, Mengel, & Niewerth, 2019b; Torunczyk,
2020) have considered circuits-like structures for encoding outputs and enumerate them
with constant delay. The novelty of ECS is twofold. First, we use ECS for solving a
streaming evaluation problem. Although people have studied streaming query evaluation
with enumeration before (Idris et al., 2017; Berkholz et al., 2017), this is the first work that
uses a circuit-like data structure in an online setting. Second and more important, there

is a difference in performance if we compare ECS to the previous approaches. In offline

48

evaluation, constant-delay algorithms usually create an initial circuit from the input, mak-
ing several passes over the structure, building indices, and then running the enumeration
process. Given time restrictions for the online evaluation, we cannot create a circuit and
do this linear-time preprocessing before enumerating. On the contrary, we must extend the
circuit-like data structure for each data item in constant time and then be ready to start the
enumeration. This requirement justifies the need for a new data structure for represent-
ing and enumerating outputs. Therefore, ECS differs from previous proposals because
each operation must take constant time, and we can run the enumeration process with
output-linear delay, at any time and without any further preprocessing. In the following,

we present Shift-ECS step-by-step to use them later in the next section.

Let €2 be a (possibly infinite) alphabet. We define an Enumerable Compact Set with
Shifts (Shift-ECS) as a tuple:
D=(Q V. (1A

such that V' is a finite set of nodes, £: V' — V and r: V' — V are the left and right partial
functions, and \: V' — QU {U, ®} is a labeling function. For every node v € V/, both
¢(v) and r(v) are defined if A(v) € {U,®}, and neither is defined otherwise. Further,
we assume that the directed graph (V, {(v,¢(v)), (v,r(v)) | v € V}) is acyclic. Note
how this implies that nodes labeled by €2 are bottom nodes in the DAG and nodes labelled
by U or ® are inner nodes. We will use the terms inner and bottom to refer to such
nodes, respectively. Furthermore, we say that v is a product node if A\(v) = ©, and a
union node if \(v) = U. We define the size of D as |D| = |V|. For each node v in D,
we associate a set of words [D](v) recursively as follows: (1) [D](v) = {a} whenever
Av) = a € Q, (2) [D](v) = [D](¢(v)) U [D](r(v)) whenever A(v) = U, and (3)
[D](v) = [D](¢(v)) - [D](r(v)) whenever A(v) = ®, where L - Ly = {w;y - wy | wy €
Ly and wy € Ly}.

Since the size of the set [D](v) can be exponential with respect to |D|, we say that D

is a compact representation of [D](v) for any v € V. Although [D](v) is very large, the

49

goal is to enumerate all of its elements efficiently. Specifically, we consider the following

problem:

Problem: ENUM-ECS
Input: A Shift-ECS D = (Q,V, ¢, r,\)and v € V.

Output: Enumerate the set [D](v) without repetitions.

Additionally, we want to solve ENUM-ECS with output-linear delay. A reasonable strat-
egy to enumerate [D](v) is to do a sequence of traversals on the structure, each of which
builds a different output from the set. However, to be able to do this without repetitions
and output-linear delay, we need to guarantee two conditions: first that one can obtain
every output from D in only one way and, second, that union nodes are close to a bottom
node or a product node, in the sense that we can always reach one of them in a bounded

number of steps. To ensure that these conditions hold, we impose two restrictions on an

ECS:

(i) We say that D is duplicate-free if D satisfies the following two properties: (1)
for every union node v it holds that [D](¢(v)) and [D](r(v)) are disjoint, and
(2) for every product node v and for every w € [D](v), there exists a unique
way to decompose w = wy - wy such that wy € [D](¢(v)) and wy € [D](r(v)).

(ii) We define the notion of k-bounded Shift-ECS as follows. Given a Shift-ECS
D, define the (left) output-depth of a node v € V, denoted by odepth,(v),
recursively as follows: odepthy(v) = 0 whenever A\(v) € Q or A(v) = ®, and
odepthp(v) = odepthy(¢(v)) + 1 whenever A(v) = U. Then, for k € N we say
that D is k-bounded if odepth,,(v) < k forallv € V.

Given the definition of output depth, we say that v is an output node of D if v is a
bottom node or a product node. Note that if D only has output nodes, then it is 0-bounded,
and one can easily check that [D](v) can be enumerated with output-linear delay. Indeed,

for a fixed £ the same happens with every duplicate-free and k-bounded Shift-ECS.

50

PROPOSITION 3.5. Fix k € N. Let D = (Q,V,{,r,\) be a duplicate-free and k-
bounded Shift-ECS. Then one can enumerate the set [D](v) with output-linear delay for

anyv €V.

PROOF. Let D = (Q,V,¢,r, \) be a duplicate-free and k-bounded Shift-ECS. The
algorithm that we present is a depth-first traversal of the DAG, done in a recursive fashion
to ensure that after retrieving some output w, the next one w’ can be printed in O(k -
(Jlw] + |w'|)) time. We will show this easier bound first, and then show how this implies

O(K'- |w'|) delay by the end of the proof. The entire procedure is detailed in Algorithm 1.

To simplify the presentation of the algorithm, we use the interface of an iterator that,
given a node v, it contains all information and methods to enumerate the outputs [D](v).

Specifically, an iterator 7 must implement the following three methods:

CREATE(v) — T 7 .NEXT — b 7 .PRINT — ()

where v is a node, b is either true or false, and () means “no output”. The first method,
CREATE, receives a node v and creates an iterator 7 of the type of v. We will implement
three types of iterators, one for each node type: bottom, product, and union nodes. The
second method, 7 .NEXT, moves the iterator to the next output, returning true if, and only
if, there is an output to print. Then the last method, 7 .PRINT, write the current output
pointed by 7 to the output registers. We assume that, after creating an iterator 7, one
must first call 7 .NEXT to move to the first output before printing. Furthermore, if 7 .NEXT
outputs false, then the behavior of 7 .PRINT is undefined. Note that one can call 7 .PRINT
several times, without calling 7 .NEXT, and the iterator will write the same output each

time in the output registers.

Assume we can implement the iterator interface for each node type. Then the proce-

dure ENUMERATE(v) in Algorithm 1 (lines 61-64) shows how to enumerate the set [D](v)

51

Algorithm 1 Enumeration over a node u from some ECS D = (2, V, £, r, \).

1:
2:

10:
11:
12:
13:

14:
15:
16:

17:
18:
19:
20:

21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

I3 EW

> Bottom node iterator 7,

procedure CREATE(v) > Assume

A(v) € Q
U4 v
hasnext < true

procedure NEXT
if hasnext = true then
hasnext < false
return true
return false

procedure PRINT
print(\(u))

> Product node iterator 7

procedure CREATE(v) > Assume

Av) =06
U <—v
Ty < CREATE({(u))
Tp.NEXT
T, <— CREATE(r(u))

procedure NEXT
if 7., . NEXT = false then
if 7,.NEXT = false then
return false
T, <— CREATE(r(u))
T, .NEXT
return true

procedure PRINT
T¢.PRINT
7, .PRINT

33: > Union node iterator 7

34: procedure CREATE(v) > Assume
Av) =U

35: St < push(St,v)

36: St < TRAVERSE(St)

37: T < CREATE(top(St))

38:
39: procedure NEXT
40: if 7 .NEXT = false then

41: St < pop(St)

42: if length(St) = 0 then
43: return false

44; else if \(top(St)) = U then
45: St <~ TRAVERSE(St)
46: T <— CREATE(top(St))
47: T .NEXT

48: return true

49:

50: procedure PRINT

51: T.PRINT

52:

53: procedure TRAVERSE(St)
54: while \(top(St)) = U do

55: u <— top(St)

56: St < pop(St)

57: St < push(St, r(u))
58: St < push(St, £(u))
59: return St

60:

61: procedure ENUMERATE(v)
62: T < CREATE(v)

63: while 7 .NEXT = true do
64: T .PRINT

by using an iterator 7 for v. In the following, we show how to implement the iterator inter-

face for each node type and how the size of the following output bounds the delay between

two outcomes.

52

We start by presenting the iterator 7 for a bottom node v (lines 1-13), called a bottom
node iterator. We assume that each 7 has internally two values v and hasnext, where
u is a reference to v and hasnext is a boolean variable. The purpose of a bottom node
iterator is only to print A(u). For this goal, when we create T, we initialize u equal to v
and hasnext = true (lines 3-4). Then, when we call 7, .NEXT for the first time, we swap
hasnext from true to false and output true (i.e., there is one output ready to be returned).
Then any following call to 7 .NEXT will be false (lines 6-10). Finally, the 7 .PRINT
writes the value A(u) to the output registers (lines 12-13). Here, we assume the existence

of a method print on the RAM model for writing to the output registers.

For a product node, we present a product node iterator 7 in Algorithm 1 (lines 15-
32). This iterator receives a product node v with A\(v) = ® and stores a reference of v,
called u, and two iterators 7, and 7,, for iterating through the left and right nodes ¢(u)
and r(u), respectively. The CREATE method initializes v with v, creates the iterators 7,
and 7,., and calls 7,.NEXT to be prepared for the first call of 7, .NEXT (lines 16-20). The
idea of 7 .NEXT is to fix one output for the left node /(u) and iterate over all outputs
of r(u) (lines 22-28). When we stop enumerating all outputs of [D](r(u)), we move to
the next output of 7, and iterate again over all [D](r(u)) (lines 24-27). For printing, we

recursively call first the printing method of 74, and then the one of 7,. (lines 30-32).

The most involved case is the union node iterator T (lines 33-59). Similarly to a
product node iterator, it receives a union node v with A(v) = U and keeps a stack of
nodes St and an iterator 7. We assume the standard implementation of a stack with the
native methods push, pop, top, and length over stacks — the first three define the standard
operations over stacks, and length counts the elements in it. The purpose of the stack is
to perform a depth-first-search traversal of all union nodes below v, reaching all possible
output nodes u such that there is a path of union nodes between v and u. If the top node of

St is an output node, then 7 is an iterator for that node, which enumerates all their outputs.

For performing the depth-first-search traversal of union nodes, we use the auxiliary

method TRAVERSE(St) (lines 53-59). While the top node « in St is a union node, it pops

53

1. ->U 2. U 3. U 4. U

7\ . N\ov . N\ov . N\ov

U Qe U Qe U ag U ag

RN SN SN SN

ay U A < ---- U < a U | aq U |

N\ 7N\ . N\ov . N\ov

U as U as U as U as
N\ N\ SN SN
) U D) U A9 <----- U< as U Y
PN PN VAN SN

as ay as ay as Qy a3 < ---- Q4

Figure 3.4. Evolution of the stack St (represented by dashed arrows)
for an iterator over the topmost union node in the figure. The under-
lying ECS contains only union nodes and six bottom nodes. The first
figure is St after calling St < push(St,v), the second is after calling
St < TRAVERSE(St). The last two figures represent successive calls to
pop(St), St <~ TRAVERSE(St).

u and pushes its right and left nodes in that order. This method will eventually reach an
output node (i.e., a non-union node) at the top of the stack and end. It is important to note
that TRAVERSE(St) takes O(k)-steps, given that the ECS is k-bounded. Then if £ is fixed,
the TRAVERSE procedure takes constant time. In Figure 3.4, we illustrate the evolution of

a stack St inside a union node iterator when we call TRAVERSE(St) several times.

The methods of a union node iterator 7, are then straightforward. For CREATE (lines
34-37), we push v into St (line 35) and traverse St, finding the first rightmost output node
from v (line 36). Then we build the iterator 7 of this output node for being ready to start
enumerating their outputs (line 37). For NEXT, we consume all outputs by calling 7 .NEXT
(line 40). When there are no more outputs (lines 41-47), we pop the top node from St and
check if the stack is empty or not (lines 41-42). If this is the case, there are no more outputs
and we output false. Instead, if St is non-empty but the top node top(St) is a union node,
we apply the TRAVERSE method for finding the rightmost output node from top(St) (lines
44-45). When the procedure is done, we know that the top node is an output node, and
then we create an iterator and move to its first output (lines 46-47). For PRINT, we call the

print method of 7 which is ready to write the current output (lines 50-51).

54

For proving the correctness of the enumeration procedure, since D is duplicate-free,
one can verify that ENUMERATE(v) in Algorithm 1 enumerates all the set [D](v), one by
one, and without repetitions. For the delay between outputs, since D is k-bounded, it is

straightforward to prove by induction that, if wy is the first output, then:

e CREATE(v) takes time O(k - |wy|),
e NEXT takes time O(k - |wy|) for the first call, and O(k - |w| + |w’|) for the next
call where w and w’ are the previous and next outputs, respectively, and

e PRINT takes time O(k - |w|) where w is the current output to be printed.

Overall, ENUMERATE(v) in Algorithm 1 have delay O(k - (Jw| 4 |w’|)) to write the next

output w’ in the output register, after printing the previous output w.

We end by pointing out that the existence of an enumeration algorithm £ with delay
O(k - (Jw| + |w'])) between any consecutive outputs w and w’, implies the existence of
an enumeration algorithm &£’ with output-linear delay as defined in Section 3.2. We start
noting that k is a fixed value and then the delay of £ only depends on |w| + |w’|. For
depending only on the next output w’, one can perform the following strategy for £’: start
by running £, enumerate the first output wy, proceed k- |wg| more steps of &, stop, and print
the separator symbol #. Then continue running £ to prepare the next output w;, proceed
k|wy | more steps, stop, and print the separator symbol #. By repeating this enumeration
process, one can verify that the delay between the i-th output w; and the (i + 1)-th output

wW;t1 18 O(Jw;41]). Therefore, £ has output-linear delay. O

The enumeration algorithm above does not require any preprocessing over D. By this
proposition, from now we assume that all Shift-ECS are duplicate-free and k-bounded for

some fixed k.

Operations allowed by an ECS. The next step is to provide a set of operations that allow
extending a Shift-ECS D while maintaining k-boundedness. Furthermore, we require

these operations to be fully-persistent: a data structure is called fully-persistent if every

55

version can be both accessed and modified (Driscoll, Sarnak, Sleator, & Tarjan, 1986a).
In other words, the previous version of the data structure is always available after each
operation. To satisfy the last requirement, the strategy will consist in extending D to D’
for each operation, by adding new nodes and maintaining the previous nodes unmodified.
Then Lp(v) = Lp(v) for each node v € V, and so, the data structure will be fully-

persistent.

Fix a Shift-ECS D = (Q, V, ¢, r, \). In the following, we say that D’ = (Q, V' ¢/, "/ X)
is an extension of D if, and only if, X C X’ for every X € {V,{,r, A\}. Further, we write
op(I) — O to define the signature of an operation op where I is the input and O is the

output. Then for any a € €2 and vy, ...,v4 € V, we define the operations:
add(D, a) — (D',) prod(D, vy, v) — (D', ') union(D, vz, v4) — (D', V')

such that D’ is an extension of D and v € V' \ V' is a fresh node such that Lp/ (v') = {a},
Lp(v') = Lp(vy) - Lp(va), and L (v') = Lp(vs) U Lp(vs), respectively. We assume
that the union and prod satisfy properties (1) and (2) of a duplicate-free Shift-ECS, namely,
Lp(vy) and Lp(v9) are disjoint and, for every w € [D](vs) - [D](v4), there exists a unique

way to decompose w = w; - wy such that wy € [D](vs) and we € [D](v4).

Next, we show how to implement these operations, where the case of add and prod
are straightforward. For add(D,a) — (D',v') define V' := V U {¢'} and X' (V') = a.
One can easily check that £.p/(v') = {a} as expected. For prod(D, vy,ve) — (D', v")
we proceed in a similar way: define V' := V U {v'}, /(v') := vy, (V') = vy, and
N(v'") = ®. Then Lp/(v') = [D](v1) - [D](v2). Furthermore, one can check that each
operation takes constant time, D’ is a valid Shift-ECS (i.e. duplicate-free and k-bounded),

and the operations are fully-persistent (i.e. the previous version D is available).

To define the union, we need to be a bit more careful to guarantee output-linear delay,
specifically, the k-bounded property. For v € V, we say that v is safe if (1) odepthp(v) <
1, and (2) if odepth(v) = 1, then odepthy(r(v)) < 1. In other words, v is safe if either

v is an output node, or its left child is an output node and its right child is either an output

56

node or has output depth 1. Note that a leaf or a product node are safe nodes by definition

and, thus, the add and prod operations always produce safe nodes.

The strategy then is to show that, if v3 and v, are safe nodes, then we can implement
the operation union(D, v3,v4) — (D’,v’) and produce a safe node v’. To reach this goal,

define (D', v') as follows:

e If v3 or vy are output nodes then V' := V' U {v'} and A(v') := U. Moreover, if
v3 is the output node, then ¢'(v') := vz and r/(v’) := v,. Otherwise, we connect
(V') == vy and 1’ (V') 1= vs.

e If v3 and v, are not output nodes (i.e. both are union nodes), then V' := V' U
{v,ug,us}, (V") == L(v3), (V') := wuy, and N (V') = U; O'(uq) := l(vyg),
' (uy) == ug, and N'(uy) 1= U; £'(ug) = r(vs), r'(uz) := r(vy), and N (uz) :=
U.

This gadget® is depicted in Figure 3.5. This construction has several properties. First, one
can easily check that L/ (v') = [D](v1) U [D](v2) and so its semantics is well-defined.
Second, union can be computed in constant time in |D| given that we only need to add
three fresh nodes, and the operation is fully-persistent given that we connect them without
modifying the nodes of D. Third, the produced node v’ is safe in D', although nodes u,
and uy are not necessarily safe. Finally, D’ is 2-bounded whenever D is 2-bounded. This is
straightforward to verify for the first case when vz or v, are output nodes. For the second
case (i.e., Figure 3.5), recall that v3 and v, are safe nodes, which means that ¢(v3) and
¢(vy4) are output nodes, and then odepthp, (v') = odepthp, (u1) = 1. Further, given that v3
is safe, we know that odepthp(r(v3)) < 1, so odepthp, (uz) < 2. Given that the output
depths of all fresh nodes in D’ are bounded by 2 and D is 2-bounded, then we conclude
that D’ is 2-bounded as well.

By the previous discussion, if we start with a Shift-ECS D which is 2-bounded (or

empty) and we apply the add, prod, or union operators between safe nodes (which also

Note that a similar trick was used in (Amarilli et al., 2017) for computing an index over a circuit.

57

v
\A
//// ul
e | U9
o /,‘——-‘—r’/m\
A\ A"/ \A g Y ;"/ \A
{(vs) r(vs) ((v4) r(vs)

Figure 3.5. Gadget for union(D, vs,v4). Nodes v/, uy, us,v3 and vy are
labeled as U. Dashed and solid lines denote the mappings in ¢ and 7’
respectively.

produce safe nodes), then the result is 2-bounded as well. Finally, by Proposition 3.5, the

result can be enumerated with output-linear delay.

Theorem 3.3. The operations add, prod, and union require constant time and are
fully-persistent. Furthermore, if we start from an empty Shift-ECS D and apply add, prod,
or union operations over safe nodes, the partial results (D', v') satisfy that v’ is always a

safe node and the set L.p/(v) can be enumerated with output-linear delay for every node v.

We want to remark that restricting the operations over safe nodes does not limit the
final user of the data structure. Indeed, since we will usually start from an empty Shift-
ECS and apply these operations over previously returned nodes, the whole algorithm will

always use safe nodes during its computation, satisfying the conditions of Theorem 3.3.

Extending ECS with c-nodes. For technical reasons, our algorithm of the next section
needs a slight extension of Shift-ECS by allowing leaves that produce the empty string €.
Let ¢ € € be a symbol representing the empty string (i.e. w - € = € - w = w). We define
an enumerable compact set with ¢ (called e-ECS) as a tuple D = (2, V, £, 7, \) defined
identically to a Shift-ECS except that:

AV 5 QU{U G,

and \(v) € {U, ®} if, and only if, both ¢(v) and r(v) are defined. Further, [D](v) = {e}

whenever A\(v) = . The duplicate-free restriction is the same for ¢-ECS and one has

58

to slightly extend k-boundedness to consider e-nodes. However, to support the prod and
union operations in constant time and to maintain the k-boundedness invariant, we need to
extend the notion of safe nodes, called ¢-safe, and the gadgets for prod and union. We sum-
marize all these details in the proof of the following theorem which is a straightforward

extension of Theorem 3.3.

Theorem 3.4. The operations add, prod, and union over -ECS take constant time and
are fully-persistent. Furthermore, if we start from an empty e-ECS D and apply add, prod,
and union over e-safe nodes, the partial results (D', v') satisfy that v' is always an e-safe

node and the set L./ (v) can be enumerated with output-linear delay for every node v.

PROOF. For dealing with e-nodes, we need to revisit the notions of output depth, k-
bounded, and safeness. For the sake of presentation, it is simpler first to introduce the
notion of e-safe nodes to then revisit all previous definitions. Specifically, for a given e-
ECS D = (2, V,¢,r, \) we say that v € V is e-safe if it is exactly one of the following

situations:

(i) AM(v) =¢,or
(ii) A(v) # €, v is a safe node, and A(u) # ¢ for any node u which is reachable from
v, or

(iii) A(v) = U, A(¢(v)) = €, and r(v) satisfies (ii).
In other words, € can only occur as the left child of an e-safe node or being the node itself.

From now on, we can assume that we will only work with e-safe nodes as the input for
enumerating or for operating them with other (e-safe) nodes. If this is the case, then the
enumeration with output-linear delay and the notions of output depth and k-boundedness
are similar to before. Therefore, we dedicate the rest of the proof to revisit the operations
prod and union when the inputs are e-safe nodes (the add operation is straightforward

similar to the case without ¢).

59

(&
U=, U=, N

7k

@ O
T, AL AN A

Figure 3.6. Gadgets for prod as defined for an e-ECS. Nodes v, v;, and v/,
correspond to v" as defined for cases (a), (b), and (c), respectively.

Assume v; and v, are e-safe. Since both v; and v, may fall in one of three cases above,
we define prod(D, vy, v2) — (D’,v') by separating into nine cases, of which the first six

are straightforward:

o If e ¢ Lp(vy) and € € Lp(v), we use the construction given for a regular
Shift-ECS.

o If ¢ ¢ Lp(vy) and A(v2) = ¢, we define v/ = vy, and D' = D.

o If \(vy) =cand e & Lp(vy), we define v/ = vy, and D’ = D.

o If \(v1) = ¢ and A\(vy) = ¢, we define v' = vy, and D' = D.

e If \(v;) = £ and vy is in case (iii), we define v = v,, and D' = D.

e If vy is in case (iii) and A(ve) = ¢, we define v' = vy, and D’ = D.

The other three cases are more involved and they are presented graphically in Fig-

ure 3.6. Formally, they are defined as follows:

(@) If ¢ € Lp(vy) and vy is in case (iii), then V' = V U {o/, 0"}, £/(v') = V",
(V') = vy, L(v") = vy, (V") = r(vy), N(v)) = Uand N (v") = ©.

(b) If vy is in case (iii) and ¢ ¢ Lp(vy), then V' = V U {/, 0"}, O/(v") = 2",
(V') = vy, L(V") = r(vy), r(v") = vy, N(v') = Uand N (v") = ©.

(c) If both v; and vy are in case (iii), we do a slightly more delicate construction.
First, we define a D” with V” = V U {v3, v}, 0"(v3) = o1, " (v3) = r(vy),
' (v1) = r(vy), " (v1) = r(ve), N (v?) = U, N'(v?) = ©. Now, let (D3, v?) <

60

union(D”,r(vy),vs). Lastly, let V! = V3 U {v*,v'}, £/(v)) = v*, r(v)) = va,
A(v') =Uand v* =e.

Note that the union operation in case (c) does not recurse since r(v;) is safe. In particular,

it does not reach any e-leaf.

For the union-operation, assume v; and vy are e-safe and define union(D, vy, v9) —

(D', ') as:

o If e ¢ Lp(vy) and € & Lp(vy), we use the construction given for a regular
Shift-ECS.

o If ¢ & Lp(vy) and A(v2) = &, we define V' = V U {v'} and N (v') = U. We
connect /'(v') = vy and r'(v') = vy.

o Ifc ¢ Lp(vy1) and v9 is in case (iii), let (D", v") = union(D, vy, 1(v2)) as defined
for a regular Shift-ECS. We define V' = V" U {v'}, and X' (v') = U where X’ is
an extension of \”. We connect ¢'(v') = £(vq) and 7' (v) = v".

o If \(v1) = cand e &€ Lp(vs), we define V! = V U {v'} and N (v') = U. We
connect /'(v') = vy and r'(v') = vs.

o If \(v1) = € and A\(v2) = ¢, we define D' = D and v’ = v;.

o If \(vy) = € and vy is in case (iii), we define D' = D and v’ = vs.

e (*) If vy is in case (iii) and € € Lp(vy), let (D", v") = union(D, r(vy),vs) as
defined for a regular Shift-ECS. We define V' = V”U{v’} and X' (v') = U where
X is an extension of \”. We connect ¢'(v') = ¢(vg) and 7’/ (v") = v”.

e If vy is in case (iii) and A(ve) = ¢, we define D’ = D and v' = v.

e If both v; and vy are in case (iii), let (D', v") = union(D, vy, r(vy)) by using the

construction of the case marked with (¥).

It 1s straightforward to check that each operation behaves as expected. Moreover, if both

v1 and vy are e-safe, then the resulting node v’ is e-safe as well for each operation.

61

We finish this proof by noticing that each operation falls into a fixed number of cases
that can be checked exhaustively, and each construction has a fixed size, so they take

constant time. Furthermore, each operation is fully persistent as expected.

3.6. Evaluating visibly pushdown annotators with output-linear delay

The goal of this section is to describe an algorithm that takes an I/O-unambiguous
VPAnn 7 plus a stream S, and enumerates the set [7](S[1,n]) for an arbitrary n > 0
with O(|Q|?*|Al)-update-time and output-linear delay. We divide the presentation of the
algorithm into two parts. The first part explains the determinization of a VPA, which is
instrumental in understanding the update phase. The second part gives the algorithm and
proves its correctness. Given that a neutral symbol a can be represented as a pair <a - a>,
in this section we present the algorithm and definitions without neutral letters, that is, the

structured alphabet is 3 = (X<, ¥7).

Determinization of visibly pushdown automata. An important result in Alur and Mad-
husudan’s paper (Alur & Madhusudan, 2004b) that introduces VPA was that one can al-
ways determinize them. We provide here an alternative proof for this result that requires
a somewhat more direct construction. This determinization process is behind our update
algorithm and serves to give some crucial notions of how it works. We start by providing
the determinization construction, introducing some useful notation, and then giving some

intuition.
Givena VPA A = (Q, X, T, A, I, F), we define the following deterministic VPA:
Adet — (Qdet q(()iet Fdet 5det Fdet)

with state set Q9 = 2@*@ and stack symbol set ['¢* = 2@XI'XQ " The initial state is
g3t = {(q,q) | ¢ € I} and the set of final states is F'4* = {S € Q4 | SN (I x F) # 0}.

Finally, we define the transition function 0¢* such that if <a € X<, then 5det(5, <a) =

62

(S, T") where S" = {(q,q) | Ip,0',v. (p,0') € S A (P,<a,q,7) € A} and T' =
{(p,v,q) | . (p,p) € S A (p,<a,q,y) € A}; if a> € ¥, then §9°(S, T, a>) = S’
where S = {(p,q) | 3, ¢',v. (p,7.0') €T AN (p',d') €S N (¢,a>,7,q) € A}

To explain the purpose of this construction, first we need to introduce some notation.
Fix a well-nested word w = ajas - - - a,,. A span s of w is a pair [i, j) of natural numbers
iand j with 1 < i < j < n+ 1. We denote by w[i, j) the subword a; - --a;_ of w
and, when ¢ = j, we assume that w[i, j) = e. Intuitively, spans are indexing w with
intermediate positions like:

ap agz ... Qp
1 2 3 n n+l

where i is between symbols a;_; and a;. Then [i, j) represents an interval {, ..., j} that

captures the subword a; ... a;_;.

Now, we say that a span [i, j) of w is well-nested if w(i, j) is well-nested. Note that
¢ is well-nested, so [i,) is a well-nested span for every i. For a position & € [1,n + 1],
we define the current-level span of k, currlevel(k), as the well-nested span [j, k) such
that j = min{j" | [j’, k) is well-nested}. Note that [k, k) is always well-nested and thus
currlevel(k) is well defined. We also identify the lower-level span of k, lowerlevel(k),
defined as lowerlevel(k) = currlevel(j — 1) = [i, 7 — 1) whenever currlevel(k) = [j, k)
and j > 1. In contrast to currlevel(k), lowerlevel(k) is not always well defined given that
it is “one level below” than currlevel(k), and this level may not exist. More concretely, for

currlevel(k) = [j, k) and lowerlevel(k) = [, j — 1), these spans will look as follows:

lowerlevel(k) currlevel(k) \L
ag ... a

—N— ——N—
a1 Az ...<@j—1 Aj...Q5-9 <Qj—1 Qj...0Ak—1
1 2 3 i j-1 Jj

n
k n n+l

As an example, consider the word (() (())) . The only well-nested spans
1 2 3 4 5 6 7 8 9

besides the ones of the form [z, 7) are [1, 9), [2, 4), [2, 8), [4, 8) and [5, 7), therefore currlevel(8) =
2,8), and lowerlevel(7) = [2,4).

We are ready to explain the purpose of the determinization above. Let w = aqas - - - a,

be a well-nested word and p%* = (S}, 71) — ... =23 (S, %) be the (partial) run of

63

pushs /' — — pushd / pushd /

lowerlevel (k)

(p,7.7) E\Tk (' q) \6 Sk 3 Open: Close:
g 1 P
S T
P~ g currlevel(k) | P rrnn P O 1

Figure 3.7. Left: An example run of some VPA A at step k. Right: Illus-
tration of two nondeterministic runs for some VPA A, as considered in the
determinization process.

A%t until some k. Furthermore, assume 7, = T} - 7 for some T}, € I'%* and 7 € (Idet)*,
The connection between p?°® and the runs of A over a; . .. ay_; is given by the following

invariants:

(a) (p,q) € S if, and only if, there exists a run (g1, 01) — ... == (qz, 03) of A
over aj . .. a1 such that ¢; = p, ¢, = ¢, and currlevel(k) = [j, k).

(b) (p,v,q) € Ty if, and only if, there exists a run (q1,01) — ... == (qr, o%)
of A over a;...a,_y such that ¢ = p, ¢; = ¢, o, = 7o for some o, and

lowerlevel(k) = [i,5 — 1).

On one hand, (a) says that each pair (p,q) € Si represents some non-deterministic run
of A over w for which ¢ is the k-th state, and p was visited on the step when the current
symbol at the top of the stack was pushed. On the other hand, (b) says that (p, v, q) € Ty
represents some run of 4 over w for which ~ is at the top of the stack, ¢ was visited on
the step when v was pushed, and p was visited on the step when the symbol below v was
pushed (see Figure 3.7 (left)). More importantly, these conditions are exhaustive, that is,

every run of A over a; . .. a,_, is represented by pdet,

By these two invariants, the correctness of A* easily follows, and the reader can get
some intuition behind the construction of §4°°(S, <a) and §9°*(S, T, a>) (see Figure 3.7
(right) for a graphical description). Indeed, the most important consequence of these two
invariants is that a tuple (g;,q;) € Sy represents the interval of some run over w(j, k)

with currlevel(k) = [j, k) and the tuple (¢;, 7, q;) € T} represents the interval of some run

64

over w(i, j — 1) with lowerlevel(k) = [i,j — 1), i.e., the level below. In other words, the
configuration (S, 7,) of A% forms a succinct representation of all the non-deterministic

runs of A. This is the starting point of our update algorithm, that we discuss next.

The streaming evaluation algorithm. In Algorithm 2, we present the update phase for
solving the streaming version of ENUMVPANN. The main procedure is UPDATEPHASE,
that receives an I/O-unambiguous VPAnn 7 = (Q, X, T, Q, A, I, F') and a stream S, reads
the next (k-th) symbol and computes the set of outputs [7](S[1, k]). More specifically,
it constructs an e-ECS D and a vertex vy such that Lp(vew) = [T](S[1, k]) if S[1, k]
is well-nested, and () otherwise. After the UPDATEPHASE procedure is done, we can
enumerate Lp(vo,) With output-linear delay by calling the enumeration phase, that is, by
applying Theorem 3.4. An example execution and the resulting data structure are shown

in Figure 3.8.

Towards this goal, in Algorithm 2 we make use of the following data structures. First,
weuse an e-ECS D = (2, V, £, r, \),nodes v € V, and the operations add, union, and prod
over D and v (see Section 3.5). For the sake of simplification, we overload the notation of
these operators slightly so that if v = (), then union(D, v, v") = union(D,v',v) = (D,v).
We use a constant-time-access map (which we will call hash table) S which indexes nodes
v in D by pairs of states (p,q) € @ x). We denote the elements of S as “(p,q) : v”
where (p, ¢) is the index and v is the content. Furthermore, we write .S, , to access the
node v. We also use a stack 7' that stores hash tables: each element is a hash table that
indexes vertices v in D by triples (p,7,q) € @ x I' x (). We assume that 7" has the
standard stack methods push and pop where if T' = ¢y - - - t1, then push(T',t) = tty--- t;
and pop(T') = tx_1 - - - t1. We write () for denoting the empty stack or for checking if 7" is
empty. Similarly to .S, we use the notation 7, , , to access the nodes in the topmost hash
table in T' (i.e., T is a stack of hash tables). We assume that accessing a non-assigned

index in these hash tables returns the empty set. All variables (e.g., S or T') are defined

globally in Algorithm 2 and they can be accessed by any of the subprocedures. Since we

65

use the RAM model (see Section 3.1), every operation over hash tables or stacks takes

constant time.

Algorithm 2 builds the e-ECS D incrementally, reading the stream S one letter at a
time by calling yielddS and keeping a counter & for the position of the current letter. For
every k € [1,n+1], UPDATEPHASE builds the k-th iteration of table S and stack 7", which
we note as S* and T, respectively. Before UPDATEPHASE is called for the first time, it
runs INTIALIZE (lines 1-5) to set the initial values of k, D, S, and T'. We consider the
initial S and T as the 1-st iteration, defined as S* = {(¢,¢) : v. | ¢ € [} and T = {) (i.e.
the empty stack) where v. is a node in D such that Lp(v.) = {¢} (lines 3-5).

In the £-th iteration, depending on whether the current letter is an open symbol or a
close symbol, the OPENSTEP or CLOSESTEP procedures are called, updating S*~! and
T*=1 to S* and T*, respectively. More specifically, UPDATEPHASE adds nodes to D such
that the nodes in S* represent the runs over w|j, k) where currlevel(k) = [j, k), and the
nodes in the topmost table in 7" represent the runs over w|i, j — 1) where lowerlevel(k) =
[i,7 — 1). Moreover, for a given pair (p, ¢), the node S;f’q represents all runs over w(j, k)
with currlevel(k) = [j, k) that start on p and end on g. For a given triple (p,~,q) the
node T . represents all runs over w[i,j — 1) with lowerlevel(k) = [i,j — 1) that start
on p, and end on ¢ right after pushing v onto the stack. Here, the intuition gained in the

determinization of VPA is helpful. Indeed, table S k and stack T* are the mirror of the

configuration (Sy, 7) of A%t (recall invariants (a) and (b)).

Before formalizing the previous ideas, we will describe in more detail what the proce-
dures OPENSTEP and CLOSESTEP exactly do. Recall that the operation add(D, a) simply
creates a node in D labeled as a; the operation prod(D, vy, v9) returns a pair (D', v’) such
that Lp/(v') = Lp(vy) - Lp(ve); and the operation union(D, vs, v4) returns a pair (D', v")
such that L/ (v') = Lp(v3) U Lp(vy). To improve the presentation of the algorithm, we

include a simple procedure called IFPROD (lines 20-26). Basically, this procedure receives

66

Algorithm 2 The update phase of the streaming evaluation algorithm for ENUMVPANN
given an I/O-unambiguous VPAnn 7 = (Q, X, T, Q, A, I, F') and a stream S.

1

S A U i

. procedure INITIALIZE(T, S)

11:
12:

13:
14:
15:
16:

do

17:

k< 1,D« 0
(D, v.) + add(D,¢)

S<—{(¢,q9) v |qe T}
T+ ()

: procedure UPDATEPHASE(T, S)

a < yieldS
if « € X° then

D < OPENSTEP(D, a, k)
else if ¢ € 3” then

D <« CLOSESTEP(D, a, k)

k< k+1
Uout<_®
if 7' = () then

foreachpe I,q€ Fst.S,,# 0

(D) UOUt)

union (D, Vour, Spq)

18:

19:
: procedure IFPROD(D, v, b, k)
21:
22:
23:
24
25:

26:

20

ENUMERATIONPHASE(D, Uoy)

if b = (a, 5) then
(D',v") + add(D, (55 k))
(D', v") + prod(D’, v, ")
else
(D', V") « (D,v)
return (D', v')

%

27

28:
29:
30:
31:

32:
33:
34:
35:

36:

38:
39:

40:
41:

: procedure OPENSTEP(D, <a, k)

42:

43

44
45:
46:

47:
48:

49:
50:
51:

52:
53:
54:

S
T < push(T, ()
forp € Qand (p/,b,q,7) € A
with b € {<a, (<a, 09}
do
if S, # 0 then
if S| , = () then
(D, v.) < add(D, ¢)
Shq € Ve
V< Sp,p/
(D,v) + IFPROD(D, v, b, k)
(D, v) + union(D, v, T)~4)
Tprg <V
S« 5
return D
: procedure CLOSESTEP(D, a>, k)

S 10
for p,p’ € Q and (¢',b,7,¢) € A
with b € {a>, (a>,)}
do
if Sy o # 0 and T, ., ,» # () then
(D,v) —
prod(D, Tp,yps Sy 1)
(D, v) < IFPROD(D, v, b, k)

(D, v) ¢ union(D,v, S,)
S;,’q —

T <+ pop(T)

S« 5

return D

anode v, an element b which can be either an input symbol a, or a pair (a, 5) for some out-

put symbol &5 and a position k, and computes (D', v') such that Lp/(v') = Lp(v)-{(s5k)}

if b= (a,8), and Lp/(v") = Lp(v) otherwise.

In OPENSTEP, S* is created (i.e. S’), and an empty table is pushed onto 7%~ to

form 7% (line 29). Then, all nodes in S*~! (i.e. S) are checked to see if the runs they

67

represent can be extended with a transition in A (lines 30-32). If this is the case (line 33
onwards), a node v, with the e-output is added in S* to start a new level (lines 33-35).
Then, if the transition had a non-empty output, the node S]’;’p, is connected with a new

label node to form the node v (lines 36-37). This node is stored in 7., , or united with

7,9’

the node that was already present there (lines 38-39).

In CLOSESTEP, S* is initialized as empty (line 44). Then, the procedure looks for all
of the valid ways to join a node in 7%~ a node in S*~!, and a transition in A to form a
new node in S*. More precisely, it looks for quadruples (p, v,7/, ¢') for which T, ', and
S;f,:; are defined, and there is a close transition that starts on ¢’ that reads ~y (lines 45-47).
These nodes are joined and connected with a new label node if it corresponds (lines 48-

49), and stored in S]’j,q or united with the node that was already present there (lines 50-51).

Finally, the top of the stack 7" is popped after all tuples (p, v, p’, ¢') are checked (line 52).

As was already mentioned, in each step the construction of D follows the ideas of
the determinization of a visibly pushdown automaton. As such, Figure 3.7 also aids to

illustrate how the table S* and the top of the stack 7" are constructed.

Example 3.2. 7o illustrate the inner workings of the algorithm, we provide an exam-
ple of a run with the VPAnn from Example 3.1 as input, and an input stream S whose first
characters are <<><>>. At this point we remind the reader that the states of this VPAnn
are named p, q and r, written in a serif-less font, and they should not be read as generic
states. The execution consists in calling INITIALIZE over T and S and then calling UP-

DATEPHASE repeatedly six times. The resulting ECS D and node v, will be shown to

satisfy £D<Uout> = [[7—]] (8[17 6])

Recall the three accepting runs of ‘T over the nested word <<><>>:

<GB >, <
o e Ty Xy Ty axy gy U e
< @ (<,>) @ (>,) @ < @ > @ >
p2: P& —— p,X——q,YX r,X r, XX r, X r,e
< l>) (>7<]) >

3 PE ——p, X —— p, XX —— p, X —— q, YX r, X re

68

< < > < > >
1 2 3 4 5 6 7
Séyp: {e} Sgyp: {e} Sgyp: {e} 5'4 p X » 5'3 S,‘:’,p: {e} SG p x " Sg’p S’ZP o x » 5'6
Sfiq: {e} Stiq: {e} S4 T3 o . S‘?wq Sg),q: {e} SG Ty, o . St?q
s;,{r: T13’Y’2 534 {(«,3)} S,?,r- S5
S3,: {e} TSy o ST {4 512y o S84 {(2.6)
U T;X’r-s;’i, U TP%XJ-SE,
ETP37X7P: sz ! 'Tp5x o S4 !
Tov.qt Sope 020} A)
ET(iX)q: 82, : ET5 £ 82, :
S : T, ?é«_ .
Toxs Sop 11 Toxe 1 Taxe 0 Texe 1 Toxp |
Tovg She B} T2y 1 T2y L Ty 0 Tiyg o
1 2 3 4 5 6 . 7
Sp,p ® Sg@ g g%p g gzyp % gg,p §6 g S @
a,q a,q 9a q,9

(D 2A3) z{)(i, 5)/®

é/) \ (>,2)«,3)

Figure 3.8. Example of running Algorithm 2 over the VPAnn 7 from Fig-
ure 3.1 and a stream S such that S[1,6] = <<><>>. The bottom part
illustrates the state of D, and the node from D that is stored at every new
index at each step.

The call to INITIALIZE is depicted in column 1. The table S is created and its only index
s (p,p). This index includes the only node in D, which is an e-node. The stack T is also

created and is empty at this point.

The following columns represent the state of the indices and what is stored in each
after each call to UPDATEPHASE. The upper region shows the indices from S as they end
up being defined at the end of each call; the middle region shows the state of the stack
T in full, also at the end of each call (the stacks in the figure show the latest element on
top; whenever the stack is empty, it is represented by a single horizontal line); the bottom

region shows, in each column k, the nodes in the ECS D that are referenced directly by S k

69

and T*. Note that the indices of each S* are lost at the end of step k — 1, yet the indices

of T* might be used in a later step, as is the case of T? at step 7.

To explain a bit further, in these regions, the indices are mapped to their respective sets,
which are written as the logic of the algorithm defines them. Let us explain the definition

of two particular indices to illustrate the constructions in more detail.

o First is index TS,Y’q: Since it is first defined in step three, after an open symbol,
it is built through lines 30-39. The only relevant transition for this index is
(p, (<,>),q,Y). After seeing that Sﬁ,p is not empty, in this same iteration the
algorithm builds the index Sg‘,q with an e-node (lines 34,35), and after doing
this, it builds a node v that represents the concatenation of Sap with the set
{(>,2)} (line 37) — and since S;p contained only an e-node, v ends up as a
bottom node with label (>,2). This node then goes through a union with an
empty index (line 38), so it remains unchanged, and then it is assigned to T;S),Y,q
(line 39). In the end, the node in D that is assigned to the index is only this
bottom node v, which is depicted in the bottom part of the figure.

e Now let us see index S;r: This index is defined through lines 45-51. The relevant
transitions in this case are (q,(>,<),Y,r) and (r, >, X,r). Note how when the
procedure goes through lines 48-49 for the first transition, it defines a node v that
represents the concatenation of TPQ’ Y. Sg’q and the set {(<,6)}, and when it goes
through these lines for the second transition, v represents the concatenation of

T7x, and SP . It is worth noting that indices T} , and T7y were defined back

p,Y q
in step 2, remained in the stack during steps 3 through 6, and only now at step
7 are they used. The two mentioned sets are merged by the union operator in
line 50. Finally, the index is assigned a union node that represents this merging,

which can be also seen in the bottom part of the figure.

To conclude the example, note how the only relevant index that is used in line 17 is
Sg’r. At the very end, the node v, is equal to the union node stored at this index, which

when enumerated will produce the set [T1](S[1, 6]).

70

Correctness of the streaming evaluation algorithm. The way how the table S* and the
stack T are constructed in Algorithm 2 is formalized in the following result. Recall that

a run of 7 over a well-nested word w = ay - - - a,, is a sequence of the form:

1 n

b.
p=(q1,01) = ... = (qus1, Ont1)

where each b; € {a;, (a;,5;)}. Given a span [i, j), define a subrun of p as a subsequence
pli,) = (qi, 07) LN =N (g;,0;). We also extend the function out to receive a subrun
pli, j) in the following way: out(p[i,j)) = out(s;,i) - ... out(s;_;,j — 1). Finally,

define Runs(7, w) as the set of all runs of 7T over w.

Lemma 3.2. Let T be a VPAnn and w = ay - --a, be a well-nested word. While
running the procedure UPDATEPHASE of Algorithm 2, for every k € [1,n+ 1], every pair

of states p, q and stack symbol ~y the following hold:

(i) Lp(SE,) has exactly all sequences out(p|j, k)) such that p € Runs(T, w(1, k)),
currlevel(k) = [j, k), and p|j, k) starts on p and ends on q.

(i) If lowerlevel(k) is defined, then Lp (T}) has exactly all sequences out(pli, j))
such that p € Runs(T, w[l, 7)), lowerlevel(k) = [i,j — 1), and pli, j) starts on

p, ends on q, and the last symbol pushed onto the stack was .

PROOF. We will prove the lemma by induction on k. The case k = 1 is trivial since
currlevel(1) = [1,1), S, is empty and lowerlevel(1) is not defined. We assume that

statements 1 and 2 of the lemma are true for £ — 1 and below.

If a;, € ¥, the algorithm proceeds into OPENSTEP to build S* and T*. Statement
1 can be proved trivially since currlevel(k) = [k, k), similarly as for the base case. For
statement 2 let lowerlevel(k) = [i, k — 1), and consider a run p € Runs(7, w1, k)) such
that p[i, k) starts on p and ends on ¢ for some p, ¢ and ~, and let p’ be its second-to-last
state. Since ay is an open symbol, then the string a;;1 - - - ax—1 1s well-nested, so it holds
that currlevel(k — 1) = [i, k — 1). Therefore, from our hypothesis it holds that [,D(S;f;,l)

contains out(p[i, k — 1)), and so, out(p[i, k)) is included in Lp (T}, ,) at some iteration

71

of T Ifz%q at line 39. To show that every element in Lp(7] Iff%q) corresponds to some run

p € Runs(T,w[l, k)), we note that the only step that modifies 7} is line 39, which is

reached only when a valid subrun from ¢ to & can be constructed.

If a;, € 7, the algorithm proceeds into CLOSESTEP to build S* and T*. Let currlevel(k) =
[7, k). In this case, statement 2 can be deduced directly from the hypothesis since j < k
and the table on the top of T is the same as T”. To prove statement 1, note that since ay, is a
close symbol it holds that currlevel(k — 1) = [j’, k — 1) and lowerlevel(k — 1) = [j, 7' — 1)
for some j’. Consider a run p € Runs(7T,w) such that p[j, k) starts on p, ends on g,
and the last symbol pushed onto the stack is . This run can be subdivided into three
subruns from p to p/, from p’ to ¢/, and a transition from ¢’ to ¢ as it is illustrated in
Figure 3.7 (Right). The first two subruns correspond to p[j, 7’ + 1) and p[j’, k — 1),
for which out(pj, j' + 1)) € Lp(T}) and out(p[j’, k — 1)) € Lp (S _}). Therefore,
out(p[j, k)) € Lp(Sk,) at some iteration of line 51. To show that every element in S
corresponds to some run p € Runs(7, w[1, k)), note that the only line at which S¥ _ is

modified are is line 51, which is reached only when a valid run from j to k£ has been

constructed. O

Since w is well nested, then currlevel(|w| + 1) = [1,|w| + 1), and so, the lemma
implies that the nodes in S!*I*! represent all runs of 7 over w. Then, whenever S[1, k] is
well-nested, the stack 7" is empty (i.e., T' = ()) and there may be something to enumerate
(line 15). By taking the union of all pairs in S**! that represent accepting runs (as is done

in lines 16-17), we can conclude the correctness of Algorithm 2.

Theorem 3.5. Given a VPAnn T and a stream S, UPDATEPHASE(T, S) fulfils the con-
ditions of a streaming evaluation algorithm and, after reading the k-th symbol, produces

a pair (D, Vout) such that Lp(vew) = [T](S[1, k]).

At this point, we address the fact that D needs to be duplicate-free in order to enumer-

ate all the outputs from (D, v,y) Without repetitions. This is guaranteed, essentially, by

72

the fact that 7 is [/O-unambiguous. Indeed, the previous result holds even if 7 is not I/O-

unambiguous. The next result guarantees that the output can be enumerated efficiently.

Lemma 3.3. Let T be an I/O-unambiguous VPAnn. While running the UPDATEPHASE

procedure of Algorithm 2, the e-ECS D is duplicate-free at every step.

PROOF. For the sake of simplification, assume that 7 is I/O-unambiguous on subruns
as well. Formally, we extend the condition so that for every well-nested word w, span
[i,7) and p € Q*, there exists only one run p € Runs(7,w) such that u = out(pli, j)).
Towards a contradiction, we assume that D is not duplicate-free. Therefore, at least one
of these conditions must hold: (1) there is some union node v in D for which £.p(4(v))
and £.p(r(v)) are not disjoint, or (2) there is some product node v for which there are at

least two ways to decompose some i € Ep(v) in non-empty strings z; and po such that

p=p1 - peand gy € £(0(v)) and ps € Ep(r(v)).

Assume the first condition is true and let v be a union node that satisfies it, and let &
be the step in which it was added to D. If this node was added on OPENSTEP, then the
node v represents a subset of the subruns defined in condition 1 of Lemma 3.2. Consider
two different iterations of lines 38-39 on step & where two nodes v and v’ were united
for which there is an element y € Ep(v) N Ep(v'). Since these nodes were assigned
to 7, ., on different iterations, the states p’ that were being considered must have been
different. Therefore, if lowerlevel(k) = [i,), u = out(p[i, k)) = out(p[i, k)) for two
runs p and p’ where the (k — 1)-th state is different. This violates the condition that 7
is I/O-unambiguous. If this node was added on CLOSESTEP, we can follow an analo-
gous argument. Note that union nodes created on a prod operation are duplicate-free by

construction (see Theorem 3.4).

Assume now that the second condition is true and let v be a node for which the con-
dition holds and let k£ be the step where it was created. We note that this node could not

have been created in OPENSTEP since the only step that creates product nodes is line 39,

73

where v has the label (5; k), and S,/ is connected to nodes that were created in a previ-
ous step, so all of the elements ;2 € £(.S), /) only contain pairs (s, j) where j < k. We can
follow a similar argument to prove that this node could not have been created in line 49
of CLOSESTEP. We now have that v was created in line 48 of OPENSTEP, and therefore
((v) = Ty % and r(v) = S]’j,jq% unless either of these indices were empty. However, that
is not possible since we assumed that the step where v was created was k, and if either

were empty, no node would have been created. Now let ;1 € £.(v) be such that there exist

strings ju1, 1) € £(TF1) and puy, iy, € L(S;f,,_ql,) such that = pype = ppy and py # .

pyv,q
!,

Without loss of generality, let 1 be the non-empty suffix in y; such that pfu” = uy. Here
we reach a contradiction since i is a prefix of s and thus it must contain a pair (55 7)

such that and j € lowerlevel(k) and j € currlevel(k), which is not possible. O

The complexity of this algorithm can be easily deduced from the fact that the e-ECS
operations we use take constant time (Theorem 3.4). Fora VPAnn 7 = (Q, 3, ', Q, A, [, F),
in each of the calls to OPENSTEP, lines 32-39 perform a constant number of instructions,
and they are visited at most |Q||A| times. In each of the calls to CLOSESTEP, lines 47-
51 perform a constant number of instructions, and they are visited at most |Q|*|A[times.
Combined with Theorem 3.5, Lemma 3.3, and Theorem 3.4, this proves the main result in

this chapter (i.e., Theorem 3.1).

Extension to prefixes of well-nested words. The aforementioned algorithm is described
only for well-nested inputs. In this subsection, we will give the main ideas of how it can be
extended to handle prefixes of well-nested words. First, we note that if Algorithm 2 were
to be used over a prefix w(1, k) of a well-nested word w € ¥<*”, the resulting D in line 18
would represent only outputs from the span [j, k) = currlevel(k). Then, the idea is to
add a second stack 7" to the algorithm, and the invariant will be that the topmost element
in it contains the outputs that correspond to the span [1,7). To be a bit more precise,
each element contains an extra one-dimensional table, indexed by states in (), such that
T} is the union of 7T}, , , for every state p and stack symbol . Recall that we are abusing

notation by using 7" to also represent the topmost element in the stack. This extension can

74

be added to OPENSTEP with no extra cost, and in CLOSESTEP we need only to add an
extra pop to the topmost element in 7”. The final change is to replace line 17 by the steps
(D,v) < prod(D, T}, Sp4) and (D, vou) < union(D, voy, v), and of course eliminate the
restriction that p € I in the for argument. For the sake of presentation, we omit a formal

proof of correctness.

3.7. Application: document spanners and extraction grammars

Liat Peterfreund (Peterfreund, 2021) proposed using extraction grammars to specify
document spanners, which is the natural extension of regular spanners to a controlled
form of recursion. Furthermore, she provided an enumeration algorithm for unambiguous
functional extraction grammars that outputs the results with constant delay after quintic
time preprocessing (i.e., in the document), later improved to cubic time (see Chapter 4). By
restricting to the class of visibly pushdown extraction grammars, we can show a streaming
enumeration algorithm with update-time that is independent of the document, and output-
linear delay. We proceed by recalling the framework of document spanners and extraction
grammars to define the class of visibly pushdown extraction grammars and state the main

algorithmic result of the section.

We use the framework of extraction grammars, recently proposed in (Peterfreund,
2021), to specify document spanners. For X C Vars, recall that Cy = { F* —+*| x € X'} is
the set of captures of X'. An extraction context-free grammar, or extraction grammar for
short, is a tuple:

G=(X,V,5, 85, P)

such that X C Vars, V is a finite set of non-terminal symbols with V' N Vars = (), &
is the alphabet of terminal symbols with ¥ NV = (), S € V is the start symbol, and
P CV x (VUXUCy)*is a finite relation. In the literature, the elements of 1" are also
referred to as “variables”, but we call them non-terminals to distinguish V' from Vars. Each

pair (A,) € P is called a production and we write it as A — «. The set of productions

75

P defines the (left) derivation relation:
=¢ C (VUXUCy)" x (VUXUCy)"

such that wAS =¢ wapf iff w € (EUCx)*, A € V, o, € (VUX UCy)*, and
A — a € P. We denote by =, the reflexive and transitive closure of =¢. Then the
language defined by G is L(G) = {w € (XU Cy)* | S =§ w}. Naturally, each word
w € L(G) is a ref-word.

In order to define a spanner from (&, we need to interpret ref-words as mappings (Freydenberger,
2019). The spanner [G] associated to an extraction grammar G is defined over any docu-

ment d € X" as:
[IGl(d) = {u" | re L(G), risvalid for X, and plain(r) = d }.

There are two classes of extraction grammars that are relevant for our discussion. The first
class of grammars is called functional extraction grammars. An extraction grammar G is
functional if every r € L(G) is valid for X. In (Peterfreund, 2021) it was shown that for
any extraction grammar G there exists an equivalent functional grammar G’ (i.e. [G] =
[G']). Non-functional grammars are problematic given that, even for regular spanners,
their decision problems easily become intractable (Maturana, Riveros, & Vrgoc, 2018;
Freydenberger, Kimelfeld, & Peterfreund, 2018). For this reason, from now on we restrict
to functional extraction grammars without loss of expressive power. The second class
of grammars is called unambiguous extraction grammars. An extraction grammar G is
unambiguous if for every r € L((G) there exists exactly one path from S to r in the graph

(VUXUCy)*, =¢). In other words, there exists exactly one leftmost derivation.

We consider now a sub-class of extraction grammars for nested words. Let > =
(35, %7, X1 be a structured alphabet. A visibly pushdown extraction grammar (VPEG)
is a functional extraction grammar G = (X, V, %, S, P) in which ¥ = (X<,%” X!)is a
structured alphabet, and all the productions in P are of one of the following forms: (1)

A= e 2)A — aBsuchthata € X' UCyand B € V; 3) A — <aBb>C such

76

that <a € X<, b> € ¥7, and B,C € V. Intuitively, rules A — aB allow producing ar-
bitrary sequences of neutral symbols, where rules A — <a B b> C' forces the word to be

well-nested.

Visibly pushdown extraction grammars are a subclass of extraction grammars that
works for well-nested documents. In fact, the reader can notice that the visibly pushdown
restriction for extraction grammars is the analog counterpart of visibly pushdown gram-
mars® introduced in (Alur & Madhusudan, 2004b). Therefore, one could expect VPEGs
to be less expressive than extraction grammars. Interestingly, we can use Theorem 3.1 to

give an efficient streaming enumeration algorithm for evaluating VPEG.

Before stating the main result of this section, we will specify the format in which the
results are to be enumerated. In a similar fashion as in Section 3.3, we define the support of

a (X, d)-mapping u, denoted by supp(1), as the set of positions mentioned in 1, namely,
supp(o) = {i | u(z) = [i,j) or u(x) = [j,7) for some j € [1,|d| + 1] and x € X'}.

Let supp(o) = {i1,...,4n} such that i; < ;44 for every j < m. Then, we de-
fine the encoding of p as: enc(u) = (S1,41)...(Sm,im) where S; = {F*| u(z) =
[i,7) for some j} U {+*| u(x) = [j,7) for some j}. The enumeration algorithm we pro-

vide thus enumerates the encoding of every mapping from [G](d).

Theorem 3.6. Fix a set of variables X. The problem of, given a functional visibly
pushdown extraction grammar G = (X,V, %S, P) and a stream S, enumerating all
(X, S[1,n])-mappings of [G](d) can be solved with update-time O (21", and output-
linear delay. Furthermore, if G is restricted to also be unambiguous, then the problem

can be solved with update-time O(|G|?).

PROOF. To link the model of visibly pushdown extraction grammars and visibly push-

down automata we define another class of automata based on the ideas in (Peterfreund,

3The definition of visibly pushdown grammars in (Alur & Madhusudan, 2004b) is slightly more complicated
given that they consider nested words that are not necessary well-nested (see the discussion in Section 3.1).

77

2021). Let A be an extraction visibly pushdown automaton (EVPA) if
A= (X,Q,2, A I, F) where X is a set of variables, () is a set of states, ¥ =
(3°,%7, %21 is a visibly pushdown alphabet, T" is a stack alphabet, A C (Q x X x
QxT)U(@xX xI'xQ) U(Qx(X'UCx) xQ), I is aset of initial states, and Fis a
set of final states. Note that this is a simple extension of VPA where neutral transitions are
allowed to read neutral symbols or captures in X. We define the runs as we did for VPA,
except the input in an EVPA is a ref-word r € (X U Cx)*, and we say that r € L(A) if
and only if there is an accepting run of .4 on r. Furthermore, we say that A is functional if
every r € L(.A) is valid for X, and A is unambiguous if for every ref-word r € (X UCx)*
there exists at most one accepting run of A over r. It is clear that this is a direct counter-
part to visibly pushdown extraction grammars. Therefore, we can use the ideas in (Alur &

Madhusudan, 2004b) to obtain a one-to-one conversion from one to another.

CLAIM 3.3. For a given VPEG G there exists an EVPA A¢ such that L(G) = L(Ag).
Moreover, Aq is unambiguous iff G is unambiguous, and A can be constructed in time

O(G))-

PROOF. Let G = (X, V, %, S, P) be a VPEG. We construct an EVPA given by Ag =
(X,Q,%,T,A I, F) such that £L(G) = L(Ag) using an almost identical construction
to the one in Theorem 6 of (Alur & Madhusudan, 2004b). The only differences arise
from our structure being defined for well-nested words, which makes the construction a
bit simpler, and from the case where a production is of the form X — aY, for which
we add the possibility that a € Cx. This construction provides one transition in A per
production in P, and in some cases, it needs to check if a variable is nullable (see (Alur &
Madhusudan, 2004b)). Checking if a single variable is nullable is costly, but by a constant
number of traversals in P it is possible to check which variables in X are nullable or not,
which can be done before building A. Therefore, this construction can be done in time
O(|P]). Finally, Ag is unambiguous if and only if G is unambiguous, which is another

consequence of Theorem 6 of (Alur & Madhusudan, 2004b). O

78

We define the spanner [.A] for a given EVPA A identically as in the definition of an
extraction grammar. Note that from the proof it follows that if G is functional, then A is

functional as well.

For the next part of the proof, assume that A is functional and unambiguous. We will
show that for an EVPA A and stream S, the set [.A](d), can be enumerated with output-
linear delay and update-time O(].Ag|?), for d = S[1, n|. Towards this goal, we will start
with an unambiguous As = (X, Q, >, ', A, I, F') and convert it into a VPAnn 7 with
output symbol set 2°%, and then use our algorithm to enumerate the set [7¢](d’) where

d' = d+#, using a dummy symbol #. We will show that this construction is correct because

[Tal(d) = {enc(u) | 1 € [Ac](d)}.

Let To = (@, %, T,Q,A" I, F') where @' = QU {¢s}, ¥ = (£,%”,%)},) such
that Z# =Y U{#}, Q = 2° and I’ = {g;}. To define A’ we introduce a merge
operation on a path over Ag. This is defined for any non-empty sequence of transitions
t = (po,v1,p1)(P1,v2,02) - - - (Pm—1, Um, Pm) € A* such that v; € Cx fori € [1,m]. If
these conditions hold, we say that ¢ is a v-path ending in p,,. Let ¢ be such a v-path and
let S = {vq,...,v,}. For <a € X<, and a transition (p, <a,, q) such that p = p,,, we
define merge(t, (p, <a, v, q)) := (po, <a, S,7, q). For a> € ¥~ and a transition (p, a>, q,)
such that p = p,,, we define merge(t, (p, a>,q,7)) := (po,a>,S,q,7). Fora € 3! and a
transition (p, a, q) such that p = p,,,, we define merge(¢, (p, a, q)) := (po, a, S, q). We now

define A’ as follows:

A" =(A\(QxCx xQ))U
{merge(t, (p, <a,,q)) | there is a v-path t € A* ending in p and (p, <a,~,q) € A} U
{merge(t, (p,a>,q,7)) | there is a v-path t € A* ending in p and (p, a>,q,v) € A} U
{merge(t, (p,a,q)) | there is a v-path t € A* ending in p and (p, a,q) € A} U

{merge(t, (p, #,qy)) | there is a v-path ¢t € A* ending in p and p € F'}.

79

Since Ag is functional, the Cx-transitions in A define a DAG over (), from which we
deduce that A is well-defined. Let us make note that we will use the symbol w to refer to

an output of a VPAnn to avoid confusion with mappings.

Before proving the equivalence between these two structures, let us note that a v-path

t = (po,v1,1)(P1,v2,02) - - - (Pm—1, Um, Pm) can be translated directly into a subrun:
Pe = Po = P12 P

We indistinguishably apply the operation merge over v-paths or subruns of this form. Also,
note that if A is unambiguous, and merge is done on a subrun of an accepting run, then

the operation is reversible.

Let u € [Ag](d), and let r € L(Ag) such that r is valid for X, plain(r) = d and
p" = p. Let p be the accepting run of Ag over 7, and consider a run p’ that is obtained
from p by applying merge over every maximal sequence ¢ of variable transitions. From
the construction of A/, it can be seen that this is a valid and accepting run of T over d’,

and that out(p’) = enc(u). We conclude that {enc(u) | u € [Ac](d)} C [Te](d).

Now, let w = [T¢](d'), and let p be an accepting run of 7 over d’ with output w.
Consider the run p’ that is obtained from p by applying the reverse of merge on every
transition in it that contains an output. Since p was over d - # and accepting, clearly p' is a
valid run of A over d, and ends in a state in /. One can also check that the sequence of
symbols in p forms a ref-word r for which enc(u”) = w and that p is valid for X because it
is accepting and A is functional. We conclude that [7¢](d") C {enc(u) | 1 € [Ac](d)},

and from the previous paragraph we obtain that these sets are equal.

To see that 7 is unambiguous, one simply needs to see that (1) every accepting run p
of T has a unique counterpart p’ of A, as it was stated in the previous part of the proof,
and (2) the merge operation has only one possible output. Therefore, if two runs p; and

p2 of T have the same output, their counterparts p) and pf, of Ag satisfy p| = p),. Clearly,

80

applying the merge operation over these runs renders p; and p3, so we conclude that they

are equal, and thus, 7 is unambiguous.

The size of A is bounded by the number of valid v-paths there could exist in Ag. Re-
call that A is functional, and thus, every v-path in A contains at most one instance of
each element in Cx. From this, it follows that the size of T¢; is in O(]A||2°%|). Further-
more, since the transitions in A form a DAG over (), each of these v-paths can be found

by a single traversal over Ag, so building 7 takes extra time O(|A|).

By using the algorithm detailed in Section 3.6 we can enumerate the set [7] (d) with
update-time O(|T¢|?) and output-linear delay. However, with a more fine-grained analysis
of the algorithm, we note that the update-time is bounded by |Q’|?|A’| € O(|Q*|A[|2%%]).
We modify the enumeration algorithm slightly so that for each output w € [T¢](d), there
is an extra step of building the expected output in [G](d). We do this by checking w
symbol by symbol and building a mapping i € [G](d), which can be done in time O(|y/),
since clearly |w| < |u|. It follows that this enumeration can be done with update-time

O(|G|?) and output-linear delay.

Finally, we address the case where GG is an arbitrary VPEG. The way we deal with
this case is by determinizing the EVPA constructed in Claim 3.3. This can be done in
time O(2M4!). From here, we can follow the reasoning given for the unambiguous case to

prove the statement. U

Note that, although the update-time of the algorithm is exponential in the size of the
grammar, in terms of data complexity the update-time is constant. Furthermore, for the
special case of unambiguous grammars the update-time even is polynomial. Unambiguous
grammars are very common in parsing tasks (Aho, Sethi, & Ullman, 1986) and, thus, this

restriction could be useful in practice.

81

3.8. Related Work

The problem of streaming query evaluation has been extensively studied in the last
decades. Some work considered streaming verification, like schema validation (Segoufin
& Vianu, 2002) or type-checking (Kumar, Madhusudan, & Viswanathan, 2007), where
the output is true or false. Other proposals (Y. Chen, Davidson, & Zheng, 2006; Olteanu,
Furche, & Bry, 2004; Josifovski, Fontoura, & Barta, 2005; Green, Gupta, Miklau, Onizuka,
& Suciu, 2004; Olteanu, 2007) provided streaming algorithms for XPath or XQuery’s frag-
ments; however, extending them for reaching constant-delay enumeration seems unlikely.
Furthermore, most of these works (Kumar et al., 2007; Gou & Chirkova, 2007; Gauwin et
al., 2009b) assumed outputs of fixed size (i.e., tuples). People have also considered other
aspects of streaming evaluation with outputs like earliest query answering (Gauwin et al.,
2009b) or bounded delay (Gauwin, Niehren, & Tison, 2009a) (i.e., given the first visit of a
node, find the earliest event that permits its selection). These aspects are orthogonal to the
problem studied here. Another line of research is (Bar-Yossef et al., 2005, 2007), which
presents space lower bounds for evaluating fragments of XPath or XQuery over streams.

These works do not consider restrictions on the delay to give outputs.

Visibly pushdown automata (Alur & Madhusudan, 2004b) are a model usually used for
streaming evaluation of boolean queries (Kumar et al., 2007). In (Filiot, Gauwin, Reynier,
& Servais, 2019; Alur, Fisman, Mamouras, Raghothaman, & Stanford, 2020), the authors
studied the evaluation of transducers built from visibly pushdown automata in a streaming
fashion, but none of them saw enumeration problems. Other extensions (Gauwin, Niehren,
& Roos, 2008) for streaming evaluation have been analyzed but restricted to fixed-size

outputs, and constant delay was not included.

Constant-delay algorithms have been studied for several classes of query languages
and structures (Segoufin, 2013), as we already discussed. In (Bagan, 2006a; Amarilli et
al., 2017), researchers considered query evaluation over trees (i.e., a different represen-

tation for nested documents), but their algorithms are for offline evaluation, and it is not

82

clear how to extend this algorithm for the online setting. This research is extended with
updates in (Amarilli et al., 2019b), which can encode streams by inserting new data items
to the left. However, their update-time is logarithmic, whereas our proposal can do it with
constant time (i.e., in data complexity). Furthermore, to the best of our knowledge, it is
unclear how to modify the work in (Amarilli et al., 2019b) to get constant update-time in

our scenario.

Streaming evaluation with constant-delay enumeration was included in the context of
dynamic query evaluation (Idris et al., 2017; Berkholz et al., 2017; Nikolic & Olteanu,
2018; Kara, Nikolic, Olteanu, & Zhang, 2020) or complex event processing (Grez et al.,
2019; Grez & Riveros, 2020). In both cases, the input cannot encode nested documents,

and their results do not apply.

83

4. ENUMERATION FOR ANNOTATED GRAMMARS

In this chapter, we introduce annotated grammars, an extension of context-free gram-
mars which allows annotations on terminals. We study the enumeration problem for anno-
tated grammars: fixing a grammar, and given a string as input, enumerate all annotations

of the string that form a word derivable from the grammar.

The first result in this chapter is an algorithm for unambiguous annotated grammars,
which preprocesses the input string in cubic time and enumerates all annotations with

output-linear delay.

We then study how we can reduce the preprocessing time while keeping the same
delay bound, by making additional assumptions on the grammar. Specifically, we present
a class of grammars which only have one derivation shape for all outputs, for which we

can enumerate with quadratic time preprocessing.

We also give classes that generalize regular spanners for which linear time preprocess-

ing is enough.

Comparison to previous chapter. In this chapter, we re-use the enumeration data struc-
ture of Chapter 3, and we consider a transducer model in Section 4.4 that recaptures some
of the already presented results. However, in our problem, we work with pushdown au-
tomata without a visibility guarantee. This poses new technical challenges: the underlying

tree structure (i.e., the parse tree) is not known in advance and is generally not unique.

Outline of the paper. In Section 4.1 we give some basic definitions of the concepts we
will use througout the paper. In Section 4.2, we describe our results for unambiguous
grammars. In Section 4.3, we present a relaxation of unambiguous grammars that we call
rigid grammars, and some results for this class. In Section 4.4, we describe our results for
pushdown annotators. In Section 4.5, we detail how to use our results in the context of

document spanners. We close our chapter in Section 4.6 by discussing related work.

84

4.1. Grammars and Annotators

Strings and annotations. Let X be a finite alphabet. We write X* for the set of strings
over X.. The length of a string w = wy - - - w,, € ¥*is |w| := n. The string of length 0 is

written €. We write u - v or uv for the concatenation of u,v € X*.

Let 2 be a finite set of annotations. An annotated string is a string w € (X U X x Q)*.
We denote strings by w and annotated strings by w when this avoids confusion. Intuitively,
if w = wy---wy,, then w; = (a,8) € X x) means that the letter a at position i is
annotated with s-(called an annotated letter) and w; € X means that there is no annotation
at position 7. Given an annotated string @ = 1y - - - Wy, we denote by str(w) = str(wy)-- - -
str(w,) the unannotated string of w, i.e., str((a,®)) := a and str(a) := a, and we denote
by ann(w) = ann(wy,1) - - - - - ann(w,, n) the annotations of w, i.e., ann((a,s),i) =
(o57) and ann(a, 7) := . Note that |str(w)| = |w], but the length |ann(w)| of ann(w) can

be much less than |w].

Annotated grammars. A context-free grammar (CFG) over X isatuple G = (V, X, P, 5),
where V' is a set of nonterminals, Y. is the alphabet (whose letters are called terminals),
S € V is the start symbol, and P is a finite set of rules of the form X — o where X € V'
and o € (V U X)*. We assume that V' and ¥ are disjoint. In this chapter, we extend this
definition to an annotated (context-free) grammar G = (V,%,Q, P, S), which is simply
the CFG (V, X U X x Q, P,S). We use G to denote a CFG and G to denote an annotated

grammar. The ferminals of G are letters a € ¥ and annotated letters (a,) € ¥ x €.

We recall the semantics of a CFG G = (V, X, P, S). Given a string u € 3*, two strings
7,0 € (VUX)*, and X € V, we say that uX 9 produces u~yd, denoted by uXd =¢ uyd,
if P contains the rule X — 7. We then say that « € (V U X)* derives § € (V U X)*,
denoted by o =7 3 or just a =~ f3, if there is a sequence of strings o, ..., a,, with
m > lsuchthata = a; = ay = ... = «a,, = . We say that G derives o € (V U X)*
if S =* «, and define the language L(G) of G as the set of strings {w € ¥* | S =* w}.

85

Note that our derivations are leftmost derivations, which is standard for the unambiguity
notions that we introduce afterwards. The language of an annotated grammar G is that of
the underlying CFG on the alphabet of terminals > U 3 x . In particular, L(G) is a set of

annotated strings.

The purpose of annotated grammars is to consider all possible annotations of an input
unannotated string w € X*. Specifically, the semantics of an annotated grammar G is
the function [G] mapping each string w € 3* to the following (possibly empty) set of
annotations: [G](w) := {ann(w) | w € L(G) A str(w) = w}.

An output of evaluating G over w is just an element 1 € [G](w). Note that, in the
case when Q = (), for all w € X* we have [G](w) = 0 if w ¢ L(G) and [G](w) = {&}
if w € L(G). So, annotated grammars subsume CFGs. In Section 4.5, we show that
they also subsume the extraction grammars of (Peterfreund, 2023), which implies that
annotated grammars are more expressive than regular spanners (Florenzano et al., 2018;

Amarilli et al., 2020), or even visibly pushdown transducers from Chapter 3.

Towards ensuring tractability, we call a CFG G unambiguous if for every w € L(G)
there is a unique derivation of w by G. We call an annotated grammar G unambiguous
if the underlying CFG over X U ¥ x (2 is unambiguous. Intuitively, this means that each
output 1 € [G](w) can be produced in only one way. Remember that there are CFGs
G with no unambiguous CFG G’ equivalent to G (i.e., such that L(G') = L(G)), and
it is undecidable to check whether an input CFG is unambiguous, or has an equivalent

unambiguous CFG. The same is immediately true for annotated grammars.

Problem statement. The goal of this chapter is to study how to efficiently enumerate the

annotations of an annotated grammar:

Input: An annotated grammar G and a string s € X*

Output: Enumerate the outputs of [G](s)

86

As it was stated, we work in the standard computational model of Random Access Ma-
chines (RAM) with logarithmic word size and uniform cost measure, having addition and
subtraction as basic operations (Aho et al., 1974). The size of G is measured as the sum of

rule lengths.

The ultimate goal of this chapter is to find enumeration algorithms to enumerate the
outputs of annotated grammars with linear preprocessing and output-linear delay. How-
ever, as we will see, this goal is not always realistic, so we will initially settle for a higher
processing time, i.e., quadratic or cubic, before presenting classes with linear preprocess-

ing in data complexity. We present our first results towards this goal in this next section.

4.2. Unambiguous Grammars

In this section we start presenting our results and show a first algorithm to enumerate
the outputs of an annotated grammar on an input string. The algorithm applies to any
unambiguous annotated grammar, and ensures cubic-time preprocessing and output-linear
delay in data complexity; in terms of combined complexity, the preprocessing is linear
on the grammar. This improves the result by Peterfreund (Peterfreund, 2023), which had

quintic-time preprocessing in data complexity.

The section is structured as follows. We present a general-purpose enumeration data
structure called enumerable sets, which is the basis of our enumeration algorithms. We
then introduce the arity-two normal form for annotated grammars, designed to ensure
efficient enumeration, and which can be enforced in linear time. After this, we present
our algorithm and state the main result in this chapter (Theorem 4.2). Last, we state a

conditional data complexity lower bound.

Enumerable sets. The preprocessing phase of our enumeration algorithm builds data
structures representing the set of outputs to enumerate. For this, we essentially re-use
the e-ECS data structure of Chapter 3, but for convenience we present them in a self-

contained way for our context, and name them enumerable sets. We now define them and

87

state that we can enumerate their contents with output-linear delay (Theorem 4.1). The
enumeration phase of our algorithm simply enumerates the outputs of an enumerable set

using this delay guarantee.

An enumerable set is a representation of a set of strings over some alphabet (). For
our case, we want strings of ()* to describe outputs, so () consists of pairs of annotations

with positions of the input string w, i.e., @ := Q x {1,...,|w|}.
The basic enumerable sets are:

e empty, the empty set;
e singleton(e), the singleton set containing the empty string;

e singleton(z) for x € (), the singleton set with the single-character string .

Enumerable sets can be combined using operators to form more complex enumerable
sets. The operators that we consider all take constant-time and are fully-persistent (Driscoll
et al., 1986a). Specifically, given enumerable sets D; and D,, combining them creates an
enumerable set without modifying D, and D; (i.e., they can still be used in other operator
applications). To make this possible, enumerable sets can share some components, e.g.,
some parts of the arguments D; and D, can be shared in memory, and the result can also
have some parts that are shared with D; and D,. This is similar, e.g., to persistent lists,
where we can only extend a list by adding an element to its head: this does not modify the

original list, and returns a new list sharing some memory with the original list.

The two operators to combine enumerable sets are:

e The union operator union(Dy, D,) can be applied if the sets represented by D,
and D, are disjoint, intuitively to avoid duplicates. It returns an enumerable set
representing the union of these sets,

e The product operator prod(D;, D,) can be applied if there are no common let-
ters in the strings of the sets represented by D; and D, i.e., if Dy (resp. Dy)

represents S; (resp. S>) then the sets {x; € O | 1 occurs in some w; € S}

88

and {xy € O | x5 occurs in some wy € Sy} are disjoint. Then, the operation
returns an enumerable set D which represents the concatenations of the strings

in Dy and in Dy: formally, it represents Sy - So = {w; - wy | wy € S1,we € Sa}.

It is known that enumerable sets can be enumerated efficiently:

Theorem 4.1. We can implement enumerable sets such that:

o The enumerable sets empty, singleton(c), and singleton(z) for x € O can be
built in constant time;

o The union and product operations can be implemented in constant time and in a
fully persistent way;

e Given an enumerable set, we can enumerate the strings it represents with output-
linear delay and memory usage linear in the number of instructions used to build

it.
We omit a formal proof given that it follows directly from Theorem 3.4.

Arity-two normal form. Having presented enumerable sets, we now present the normal
form to enforce on annotated grammars. Our results could be shown using the commonly
known Chomsky normal form (CNF), but we cannot always obtain an equivalent CNF of
linear size from a grammar. For this reason, we use a variant of CNF, the arity-two normal
form (2NF) (Lange & Leif3, 2009), which is intuitively like CNF but without disallowing
rules of the form X — Y or X — e. Formally, we say that an annotated grammar

(V,%,Q, P,S) is in arity-two normal form (2NF) if the following hold:

e Every nonterminal X can derive some string, i.e., there exists w € (YUY x Q)*
such that X =5 w.

e Every nonterminal X can be reached from the start symbol S, i.e., there exists
a,f e (VUXUX x Q)" such that § =% aX .

e For every rule X — « in P, we have |a| < 2, and if @ = 2 then it consists of

two nonterminals.

89

We can easily translate annotated grammars to 2NF, as in (Lange & Leif3, 2009):

PROPOSITION 4.1 ((Lange & LeiB}, 2009)). Given any annotated grammar G, we can
compute in linear time an annotated grammar G' in 2NF such that G and G’ are equivalent.

Furthermore, if G is unambiguous then G' is unambiguous as well.

We omit a proof of this statement here since it follows from the reference. However,
we will prove a stronger version of it in the following sections when further restrictions

for grammars are introduced.
By Proposition 4.1, we assume that the input grammar G is in 2NF.

We also compute in linear time some more information about G. First, we precompute
which nonterminals are nullable, i.e., are such that X' =7 ¢: if we have arule X — ¢ then
X 1is nullable, and if we have a rule X — Y where Y is nullable or X — Y Z where Y
and Z are nullable then X is also nullable. From this information, we further compute for
each nonterminal Y a set D[Y] of all nonterminals X such that one of the following rules
exist: arule X — Y, arule X — Y Z where Z is nullable, or arule X — ZY where Z is
nullable. We can clearly compute all of this in linear time (note that each rule contributes

at most two entries to D).

Second, as the grammar is assumed to be unambiguous, it also contains no cycles, i.e.,
there are no sequence of nonterminals X ... X, such that for 1 <i < n, X; € D[X;1]
and X; € D[X,]. Indeed, otherwise there would be infinitely many possible derivations
of some string starting at X, contradicting the unambiguity of §. Thus, we can sort the
nonterminals of G in topological order, by which we mean that when Y € D[X| then Y is
enumerated after X . Intuitively, when we consider a nonterminal X, we want to be done
with processing the nonterminals Y such that X — Y or X — YZor X — ZY with Z

nullable. This order can also be computed in linear time.

90

Enumeration algorithm. We now present the preprocessing phase of the enumeration
algorithm, formalized as Algorithm 3 where the input string w = a; ... a, is assumed

nonempty.

The principle of the algorithm is the following:

PRINCIPLE 4.1. For every triple of the form (i,7,X) with 1 < i < j < n+1
and X € N, the table cell 1[i|[j][X] will contain an enumerable set representing the

annotations of the string a; - - - a;_; that can be derived from symbol X in the grammar.

These sets are initialized to be empty. In lines 5—11 of the algorithm, the cells I[z][j][X]
with 7 —¢ = 1 are initialized to consider derivations via “simple rules” of the form X — «a
or X — (a,). (For now, ignore the role of the endIn table.) Note that the rules of the form
X — ¢ are considered when defining D and not further examined by the algorithm. At
the end, line 24 returns the enumerable set for the annotations of the entire string derivable

from the start symbol, i.e., the outputs of G on w.

The main part of the algorithm consists in satisfying Principle 4.1 by adding the an-
notations corresponding to “complex” rules (i.e., of the foom X — YZ or X — Y).
At the beginning of the algorithm the cells of the table I might lack some annotations
corresponding to complex rules, but each cell will be considered complete at some point
during the execution, at which point it will satisfy Principle 4.1 and will not be modi-
fied anymore. We define the order in which the cells are considered complete as follows:
(1,7, X) < (7,7, X Ywhen j < j'or (j =j' Ni>i)or(j =4 Ni="ANX < X')

where we order nonterminals X and X' following the topological order from D.

Consider the complex derivations starting from X of the string a; - - - a;_1, 1.e., those
that begin with a complex rule. We will see here how to reflect them in I[i][j][X]. There
are two kinds of complex derivations. The first kind is the derivations where we first
rewrite X to another nonterminal Z with a rule X — Z, or by rewriting X to Y Z or ZY

but where Y is nullable and will be rewritten to €. In these three cases, we have X € D[Z].

91

Thus, we fill the index I[¢][j][X] with the contents of 1[:][j][Z], which is already complete,
for X € D[Z] (lines 15-16).

The second kind of complex derivation begins with a complex rule X — Y Z where
neither Y nor Z will be rewritten to €. In this case, the set of annotations to add into
I[é][7][X] using this rule is the union of products of all the I[¢][%|[Y] and I[k][j][Z] where
i < k < j. Wehave (i,k,Y) < (k,j,Z) < (i,7,X), so we can fill I[i][5][X] with
the product of the contents of I[i|[k][Y] and I[%][][Z], at the moment where [[k][j][Z] is

considered complete.

To summarize, from line 12 onwards, the algorithm considers the positions j in as-
cending order, and populates all cells I[][j][X] so that they are complete. To do so, we
consider the triples (k, j, Z) by increasing order in our sorting criterion, i.e., by decreasing
k, then increasing Z in the order of the topological sort. Whenever we consider a cell, it
is complete, and we consider its contributions to cells of the form 1[¢][j][X] with i = k
using complex rules of the first kind (lines 15-16), and if it is non-empty we consider
how to combine it with a neighboring cell (which is also complete and non-empty) as we
explained previously, adding the results to a cell I[¢|[j][X]| with ¢ < k which is not yet

complete (lines 17-23).

We now explain the optimization involving the set endln. It is not necessary to achieve
the cubic running time of this section, but is required for the quadratic bound in Sec-
tion 4.3. The optimization is that, when processing the triple (k, j, Z) and the rule X —
Y Z, we do not test all the possible cells I[¢][£]|[Y], but only those that are non-empty.
Indeed, if 1[i|[k][Y] is empty, then the concatenation of I[¢][k]|[Y] with I[k][][Z] is also
empty. Thus, we maintain the list endIn[k][Y] of all the i’s to consider with i < &,
i.e., those such that I[i][k][Y] is non-empty. We initialize this list to be empty, add i to
endIn[k][Y] whenever [[i][k][Y] becomes non-empty (at line 11 in the base case, or at
line 21 before adding to an empty cell for the first time). Then, we only consider the

indices 7 of this list to combine 1[¢][k][Y] with another cell.

92

We now argue that our algorithm is correct, and in particular that (i) we satisfy Princi-
ple 4.1; that (ii) all the unions are disjoint, and that (iii) all the products involve enumerable
sets on disjoint alphabets. One can establish (i) by showing by induction over cells that
the invariant is correct when each cell is considered complete by our algorithm (and the
cell is not changed afterwards). Knowing (i), the first violation of (ii) would witness that
the same annotation of some factor a; - - - a;_; can be derived in two different ways from
a nonterminal X, contradicting unambiguity, so there are no violations of (ii). For (iii),
we simply observe that, by (i), I[¢][j][X] only contains pairs of the form (s; k) for some
i <k < j, so we can indeed perform the product of 1[:][k][Y] and 1[k][j][Z].

This establishes that the algorithm is correct. Now, the running time of the preprocess-
ing phase of the algorithm is clearly in O(n?|G|), because (1) the endIn lists are of size
O(n) at most, and (2) the consideration of all Z € N and X € D[Z] is in O(|G|): every
X € D[Z] corresponds to a rule, so the consideration of all Z € N and rules in CRule[Z]
is in O(|G|). The enumeration phase is then simply that of Theorem 4.1. Hence, we have
shown that enumeration for unambiguous annotated grammars can be achieved with cubic

time preprocessing and output-linear delay:

Theorem 4.2. Given an unambiguous annotated grammar G and an input string w,
we can enumerate [G](w) with preprocessing in O(|w|? - |G|) (hence cubic in data com-

plexity), and output-linear delay (independent from w or G). The memory usage is in

O(lwl*-1G]).

Lower bounds. We cannot show a lower bound that matches the complexity of our algo-
rithm, but we can prove that we cannot achieve a preprocessing time better than the time to
test whether a string is accepted by a CFG, which is essentially the complexity of Boolean

matrix multiplication (Abboud et al., 2018):

PROPOSITION 4.2. Let w be the smallest value such that we can multiply two Boolean

n x n matrices in time O(n*+t°1). Then for any ¢ > 0 there is an unambiguous annotated

93

Algorithm 3 Preprocessing phase: given a 2NF unambiguous annotated grammar G =
(N,3,Q, P,S) and a non-empty string w = ay - - - a,,, compute an enumerable set repre-

senting [A](w).
I: I+ anarray (n+ 1) x (n+ 1) x N initialized with empty
2: endIn < an array (n + 1) x N initialized with empty lists
3: CRule < an array such that CRule[Z] = {X — Y Z € P}
4: D < an array as described in the presentation of 2NF
5: for1 <i<ndo
6: ifrule (X — q;) in P then
7: I[é][i + 1][X] <= union(I[z][z + 1][X], singleton(e))
8: forrule (X — (a;,8))in P do
9: I[é)[¢ 4+ 1)[X] <= union(I[z][z + 1][X], singleton((ss1)))
10: if I[¢][¢ + 1][X] # empty then

11: endIn[i + 1][X].append(7)

12: forj=1ton+ 1do

13: for k. = 5 — 1 downto 1 do

14: for nonterminal Z € N in topological order do

15: for nonterminal X € D[Z] do

16: TEIGIIXT = union(I[K][5][XT, T[] [511Z])

17: if I[%][j][Z] # empty then

18: for rule (X — Y Z) in CRule[Z] do

19: for i € endIn[k][Y] do

20: if I[¢][j][X] = empty then

21: endIn[j][X].append(7)

22: Ia][][X] <= union(W[z][7][X],

23: prod(I[Z][K][Y'], T[K][5][2]))

24: return [[1][n + 1][5]

grammar G such that, given an input string w, enumerating [G](w) with output-linear

delay requires a preprocessing time of Q(|w]“~°).

PROOF. We know from (Abboud et al., 2018) that for any ¢ > 0, there exists a fixed

grammar G such that determining whether a string w is derived by G, cannot be solved in

time O(|w|“~°), unless the conjecture in graph algorithms mentioned in (Abboud et al.,

2018) is false.

We will see that this conditional lower bound translates to unambiguous annotated

grammars. Indeed, we will show that for each grammar G there exists an unambiguous

94

annotated grammar G’ such that w is derived by G if and only if [G'](w) is non-empty.
Therefore after the preprocessing of w for G’, we know in constant time whether w is
derived by G which proves that the preprocessing of G’ on w requires O(|w|“~¢) time,

assuming the conjecture is true.

Now let us show how to translate a grammar G into an unambiguous annotated gram-
mar G’. This can be challenging, because G is not necessarily unambiguous: for this reason
we need to define G’ intuitively by adding annotations that disambiguate the various possi-
ble derivations of G, to guarantee that the result is unambiguous. As this is cumbersome to
do on grammars, we use the correspondence between annotated grammars and pushdown

annotators (Proposition 4.7), shown later in the article.

In this proof, we will use the notion of pushdown automata (PDA); see Definition 4.2
for the formal definition. Let us consider a PDA P which is equivalent to G. As is standard
with PDAs, we can change the given definition to suppose without loss of generality that
no transition in P is an e-transition. Specifically, we consider PDAs in a slightly different
model where transitions are of the form (¢1, a, s1, g2, 52) € Q@ x X x I'T x @ x I'": such
a transition means that in state ¢;, when the top stack symbols are s; and the next letter
to read is a, the automaton can read the letter, move to state ¢, and replace s; by s; on
the stack. We create our unambiguous PDAnn P’ from P by replacing each transition
t = (qi,a,s1,qe, s2) to a set of transitions that first pop the symbols of s; from the stack,
then reads a, then pushes the symbols of s5 onto the stack. The first state of this transition
is q1, the last state is ¢, but we make sure that each of the intermediate states are unique
to t. Furthermore, the transition that reads the letter a outputs a symbol unique to the
transition t. Therefore, by construction there is a bijection between runs of P and runs
of P’ and the PDAnn P’ is unambiguous because the run used for each output can be

retrieved from that output.

We conclude by using Proposition 4.7 to obtain an equivalent annotated grammar G,
which is also unambiguous. Thus, we know that on any unannotated string w, the set

[G'](w) is empty if G does not derive w, and non-empty if it does. Thus, we know that,

95

if we assume the conjecture is true, we cannot determine in O(|w|“~¢) whether [G'](w)
is empty or not. But if we have an algorithm to enumerate [G'](w) with output-linear
delay, as any output has size O(|w|) in |w|, we can do this with a complexity linear in |w|
which is that of the preprocessing of the enumeration algorithm. Thus, we conclude that

the preprocessing conditionally requires 2(|w|“~¢) time.

4.3. Rigid Grammars

In the previous section, we have shown how to enumerate the output of unambiguous
annotated grammars on strings, with output-linear delay and cubic preprocessing in the
input string. This algorithm has two drawbacks: it requires us to impose that the grammar

is unambiguous, and the cubic preprocessing may be expensive.

In this section, we introduce a new class of annotated grammars, called rigid gram-
mars. Rigid grammars do not need to be unambiguous, but as we will show a rigid gram-
mar can always be converted to additionally impose unambiguity. The point of rigid gram-

mars is that we can show a quadratic bound on Algorithm 3 for them.

We first define rigid grammars in this section. We then state that we can impose un-
ambiguity for rigid grammars, and derive some consequences about their expressiveness
and the complexity of recognizing them. Last, we show a quadratic bound on the prepro-
cessing time for output-linear enumeration for such grammars, and explain why a better

bound would be challenging to achieve.

4.3.1. Definitions

Rigid grammars. We first define the restricted notion of grammars that we study. Con-
sider an annotated grammar G = (N, 3,2, P, S), and a string y € (X U (X x Q) U N)* of

nonterminals and of terminals which may carry an annotation in 2. We will be interested

96

in the shape of ~, written shape(~): it is the string over {0, 1} obtained by replacing every

nonterminal of /V in 7y by 1 and replacing all terminals (annotated or not) by 0: note that

shape(y)| = ||

We then say that an annotated grammar G is rigid if for every string w € X*, all
derivations from the start symbol S of G to an annotated string w of w have the same
sequence of shapes (remember that we only consider leftmost derivations). Formally, there
exists a sequence sy, ...,s; € {0,1}* depending only on w such that for any derivation
S =) =g ay =¢ ... =g q, = W with str(w) = w, we have m = k and shape(q;) =

s; forall 1 <4 <k.

Intuitively, the sequence of shapes of a derivation describes the skeleton of the corre-
sponding derivation tree. Thus, a rigid annotated grammar is one where, for each unanno-
tated string, all derivation trees for all annotations of the string are isomorphic (ignoring

the labels of nonterminals and the annotation of terminals).

Now we restate Proposition 4.1 while including the angle of rigid grammars.

PROPOSITION 4.3 (Proposition 4.1). Given any annotated grammar G, we can com-
pute in linear time an annotated grammar G' in 2NF such that G and G' are equivalent.
Furthermore, if G is unambiguous (resp. rigid) then G' is unambiguous (resp. rigid) as

well.

PROOF. Conditions 1 and 2: removing useless nonterminals. We first perform a linear-
time exploration from the terminals to mark the nonterminals X that can derive some
string of terminals. The base case is if a nonterminal X has a rule X — « where «
only consists of terminals (in particular « = ¢), then we mark it. The induction is that
whenever a nonterminal X has a rule X — « where o only consists of terminals and
of marked nonterminals, then we mark X. At the end of this process, it is clear that
any nonterminal that is not known to derive a string of terminals indeed does not derive

any string, because any derivation of a string of terminals from a nonterminal X would

97

witness that all nonterminals in this derivation, including X, should have been marked,
which is impossible. Hence, we can remove the nonterminals that are not marked without
changing the language or successful derivations of the grammar, and satisfy condition 1 in

linear time.

Second, we perform a linear-time exploration from the start symbol S to mark the
nonterminals X that can be reached in a derivation from S. The base case is that S is
marked. The induction is that whenever a nonterminal Y occurs in the right-hand side of
a rule having X as its left-hand side, and X is marked, then we mark Y. At the end of
the process, if a nonterminal X is not marked, then indeed there is no derivation from S
that produces a string featuring X, as otherwise it would witness that X is marked, which
is impossible. Hence, we can again remove the nonterminals that are not marked, the
grammar and successful derivations are again unchanged, and we satisfy condition 2 in

linear time.

As the transformations here only remove nonterminals and rules that cannot appear in

a derivation, they clearly preserve unambiguity as well as rigidity.

Condition 3: shape of rules. We first ensure that every right-hand side of a rule is of
size < 2. Given the annotated grammar G, for every rule X — « where || > 2, letting
a = qq - - - 0y, We introduce n — 2 fresh nonterminals X, 1, ..., X, ,—2, and replace the

rule by the following: X — o Xy 1, Xo1 — aa X2, ooy Xan—2 — Qp_10u,.

We make sure that the right-hand side of rules of size 2 consist only of nonterminals
by introducing fresh intermediate nonterminals whenever necessary, which rewrite to the

requisite terminal.

It is then clear that the result satisfies condition 3, and that there is a one-to-one cor-
respondence between derivations in the original grammar and derivations in the rewrit-
ten grammar. To see this, note that there is an obvious one-to-one function which maps
derivations from the original grammar into derivations in the new grammar, and that there

is a slightly more involved function which receives a derivation in the new grammar, and

98

builds a derivation in the original grammar by following the steps detailed above (and us-
ing the fact that each fresh nonterminal is associated to exactly one rule), which is also
one-to-one. We conclude that the original grammar is unambiguous if and only if the new

grammar is unambiguous.

The last point to check is that the arity-2 transformation preserves rigidity, i.e., if
the original annotated grammar is rigid then so is the image of the transformation. Let
X be some symbol of the original grammar ¢, and w € X* be a string. Let us show
that all derivations from the corresponding symbol X’ of the rewritten grammar G’ have
same shape. We do so by induction on the length of w and then on the topological order
on nonterminals. The base case of w of length O is clear: the possible derivations are
sequences of applications of rules of the form Y — Z in a sequence of some fixed length,
followed by a rule of the form ¥ — ¢, and what can happen in the rewritten grammar is

the same.

For the inductive case, as G is rigid, we know that there must be one fixed profile
7 € {0, 1}* such that all derivations of w from X start by the application of a rule X — «
where « corresponds to profile 7, i.e., it has length £ and its ¢-th character is a nonterminal
or terminal according to the value of the i-th bit of 7. Otherwise the existence of two
different right-hand-side profiles would contradict rigidity. Furthermore, by considering
the possible sub-derivations from «; (including the empty derivation if «; is a terminal),
we know that o derives some fixed prefix of w and that all such derivations have the same
sequence of profiles; otherwise we would witness a contradiction to rigidity. By applying
the same argument successively to ao, . . ., ax, we deduce that there must be a partition of
w = wy - - - wy such that, in all derivations of w from X, the derivation applies a rule with
right-hand having profile 7 to produce some string a; - - - o, and then each «; derives an
annotation of w; and for each ¢ all possible derivations of some annotation of w; by some

i-th element in the right-hand size of such a rule has the same sequence of profiles.

As the string is nonempty we know that £ > 0. Further, if £ = 1 then X and the

productions involving X were not rewritten so we immediately conclude either with the

99

case of arule X — 7 for a terminal 7 or by induction hypothesis on the nonterminals in
the topological order for the case of a rule of the form X — Y. Hence, we assume that

k> 2.

We know by induction that, in the rewritten grammar, the derivation from X will
start by rewriting X to Y1.X, 1, the X, ; being itself rewritten to Y5.X,, 2, and so on, for
some right-hand size « of a rule X — « having profile w. Clearly each Y; will have
to derive an annotation of the w; in the partitioning of w, as a derivation following a
different partitioning would witness a derivation in the original grammar that contradicts
rigidity. Now, the profile 7 indicates if each Y; is a nonterminal of the initial grammar
or a fresh nonterminal introduced to rewrite to a terminal. In the latter case, there is no
possible deviation in profiles. In the former case, we conclude by induction hypothesis
that each Y; derives annotations of its w; that all have the same profile, and we conclude
that all derivations in the rewritten grammar indeed have the same profile, concluding the

proof. U

Rigidity vs unambiguity. Unambiguity and rigidity for annotated grammars seem incom-
parable: unambiguity imposes that every annotation is produced by only one derivation,
whereas rigidity imposes that all derivations across all annotations have the same shape

(but the same annotation may be obtained multiple times).

However, it turns out that, on rigid grammars, we can impose unambiguity without loss
of generality: all rigid grammars can be converted to equivalent rigid and unambiguous

gramimars.

Theorem 4.3. For any rigid grammar G we can build an equivalent rigid and unam-
biguous grammar G'. The transformation runs in exponential time, i.e., time (’)(2'9‘0) for

some ¢ > (.

PROOF. In this proof, we will use the notion of PDAnn introduced in Section 4.4, and

we will use Proposition 4.7, which is also stated in Section 4.4.

100

To prove Theorem 4.3, we introduce a general-purpose normal form on PDAnn, where,
intuitively, the only choices that can be made during a run are between the fypes of transi-

tion to apply.

Definition 4.1. A PDAnn P is deterministic-modulo-profile if it satisfies the following

conditions:

(1) for each state p there is at most one push transition that starts on p, formally

Hg, 7€ Q@ xT'|(p,g,7) e A} <1

(i1) for each state p and stack symbol ~y there is at most one pop transition that starts
on p,, formally [{q € Q | (p,7,q) € A} <1

(iii) for each state p, letter a, and output 5-€ S, there is at most one read-write tran-
sition that starts on p, a, 5; formally, we have |{q € Q | (p, (a,8),q) € A}| < 1.

(iv) for each state p and letter a, there is at most one read transition that starts on

p,a, formally [{q € Q | (p,a,q) € A} < 1.

Lemma 4.1. Let P be a PDAnn. We can build an equivalent PDAnn P’ which is
deterministic-modulo-profile. The transformation takes exponential time, i.e., time O(2/71)

for some ¢ > 0.

Further, on any string w, there is an accepting run of P on w with profile 7 iff there is

an accepting run of P’ on w with the same profile.

PROOF. The proof is similar to the determinization of visibly pushdown automata (see

Section 3.6, also Proposition 3.2).

Given P = (Q, %, Q, T, A, qo, F), we build P’ = (Q', 2, Q, T, A’, Sy, F') as follows.
We build Q' = 29*€, intuitively denoting a set of pairs of states (p, q) of P such that
‘P can be at state ¢ at this point if it was at state p when the topmost stack symbol was
pushed. We build IV = 29XI'*Q_intuitively specifying the sets of possible stack symbols
and remembering the state just after the previous stack symbol was pushed and the state

just after that symbol was pushed. We build S; = {(qo, ¢o) }, meaning that initially we are

101

at the initial state gy and were here when the stack was initialized. We build F’ = {5 |
(g0, q) € S for some g € F'}, meaning that we accept when P reaches a final state and we

were at the initial state when the stack was initialized. Let A’ be defined as follows:

e The (unique) push transition from a state S €)’ makes P’ push a stack symbol
S’ and move to a state 7, intuitively defined as follows. For every pair (p, p’)
of S and push transition (p’, ¢,7y) € A in the original PDAnn, we can move to
state (¢, q) and push on the stack the symbol (p,~, q). The stack symbol S’ is
the set of all possible stack symbols that can be pushed in this way, and 7" is the
set of all possible states that can be reached in this way.

Formally, for every S € Q' we include (5,5, T) in A’, where:

T ={(p,v.q) | (p,p") € Sand (p,q,7) € Aforsome p,p',q € Q,v €T},

S"={(¢,q) | (p,p’) € Sand (p',q,7) € Aforsomep,p’,q € Q,y €I}

e The (unique) pop transition from a state S € ' and topmost stack symbol
T € T makes P’ move to a state 7" intuitively defined as follows. For every
pair (p/, ¢') of S, we consider all triples (p, 7, p’) of the topmost stack symbol 7',
and if the original PDAnn had a pop transition (¢’,~,q) € A, then we can pop
the topmost stack symbol and go to the state (p, ¢). The new state 7" is the set

of all pairs (p, ¢) that can be reached in this way.
Formally, for every (S,7) € Q" x I we include (S, T, 5") in A’, where:

S"={(p,q) | (p,v,p") € Tand (p',q') € Sand (¢',7,q) € Aforsome p,p’,q,¢' € Q,v €T},

e The (unique) read-write transition from a state S € ()’ on a letter a € X and
output 5- € {2 makes P’ move to a state S’ intuitively defined as follows: we
consider all pairs (p,p’) in S and all transitions from p’ with a and &-in P to

some state ¢, and move to all possible pairs (p/, ¢).

102

Formally, for every (S, a,®) € Q' x ¥ xQ we include (5, (a,), S") in A/, where:

S" ={(p,q) | (p,p') € Sand (p/, (a,5),q) € A for some p,p’,q € Q}.

e The (unique) read transition from a state S € ()’ on a letter a € ¥ makes P’
move to a state S’ intuitively defined as follows: we consider all pairs (p, p’) in
S and all transitions from p’ with @ in P to some state ¢, and move to all possible
pairs (p/, q).

Formally, for every (S, a) € Q' x ¥ we include (S, a, ") in A’, where:

S"={(p,q) | (p,p') € Sand (p,a,q) € A forsome p,p’,q € Q}.

It is clear by definition that P’ is deterministic-modulo-profile, and it is clear that the

running time of the construction satisfies the claimed time bound.
We now show that P and P’ are equivalent.

Now, for the forward direction, let us first assume without loss of generality that when-
ever P makes a push transition then the stack symbol that it pushes is annotated with the
state reached just after the push. Then we will show that every instantaneous description
that can be reached by P can be reached by P’ by induction on the run. Specifically, we
show by induction on the length of the run p the following claim: if P has a run p on
a string w that produces p from an initial state ¢y € 7' to an instantaneous description
(q,1), o, with & = yopo, - . - , YmPm being the sequence of the stack symbols and states an-
notating them, then P’ has a run p’ on w from S; to an instantaneous description (S, 1), o/
with o/ = Ty ...T,, such that Ty contains (qo, Yo, Po), 11 contains (po, Y1,P1)s --» Im

contains (Pm—1, Ym, Pm) and S contains (p,,, q); further p and p’ have the same profile.

The base case of an empty run on a string is immediate: if P has an empty run from
an initial state ¢, then it reaches the instantaneous description with (¢o, 0) and the empty
stack, and then P’ then has an empty run reaching the instantaneous description (.5, 0)

with the empty stack and .S indeed contains (qo, o).

103

For the induction case, assume that P has a non-empty run p; on a string w that
produces p. First, write p, as a run p followed by one single transition of P. We know P
has a run p on w which produces p from an initial state g, to an instantaneous description
(q,7),a, with & = po, - - ., YmPm- By the induction hypothesis, we know that P’ has
arun p’ on w from (g, go) to an instantaneous description (S, i), o’ with o = T ... T,
such that Tj contains (qo, Yo, po), 71 contains (pg, Y1, P1)s - L cONtains (pp_1,7, Pm)
and S contains (p,,,q); and p’ and p have the same profile. We now distinguish on the

type of the transition used to extend p to p, .

If that transition is a read-write transition (¢, (a,), ¢’), we consider the read-write
transition of P’ labeled with (a,s) from 7, and call S’ the state that P’ reaches. As
(Pm,q) € Sand (q,(a,8),q) € A, we know that (p,,,q’) € S’. Thus, P’ can read (a, &)
and reach a suitable state S’ and position 7 + 1 and the stacks are unchanged so the claim

is proven.
If that transition is a read transition (g, a, ¢'), we follow an analogous reasoning.

If that transition is a push transition (¢, ¢, v), the position of P is unchanged and the
new stack is extended by - annotated with state ¢’. Consider the push transition of P’
from ¢, and call S’ the state reached and T = T, the stack symbol that is pushed. As
(Pm,q) € S and (¢,q¢,v) € A, we know that T' contains (p,,,7,q’), and S’ contains

(¢, q'), which is what we needed to show.

If that transition is a pop transition, (¢, ¥, ¢’), the position of P is unchanged and
the topmost stack symbol is removed. Consider the topmost stack symbol 7}, and the
transition of P’ that pops it from S, and call S’ the state that we reach. We know that
S contains (p,,,q) and T, contains (Pym—1, Y, Pm) and (¢, Ym,q) € A, so S’ contains

(Pm-1,¢"), which is what we needed to show.

Note that, in all four cases, the profile of p, and p’_ is the same, because this was true
of p and o, and the type of transition done to extend p’ to p/, is the same as the type of

transition done to extend p to p.

104

The inductive claim is therefore shown, and thus if P has a run p on some string w that
produces 4 starting at some initial state g and ending at state ¢, then P’ has a run p’ on w
which produces p and ending at a state of the form (qq, ¢) for ¢y and having same profile.
Thus, if p is accepting then ¢ is final for P and (qo, ¢) is final for P’ so p’ is accepting.

This concludes the forward implication.

We now show the backward implication, and show it again by induction, again assum-
ing that P annotates the symbols of its stack with the state reached just after pushing them.
We show by induction on the length of a run p’ the following claim: if P’ has a run p’ on
a string w that produces pfrom its initial state to an instantaneous description (S,1%), o/
with o/ = Ty, ..., T,, being the sequence of the stack symbols, then for any choice of
elements (qo, Y0, 20) € To, (Po, Y1,01) € T1s voos (Pi—1, Yy Pm) € T and (P, q) € S it
holds that P has a run p on w producing x from some initial state ¢, to the instantaneous
description (g, 1), a with &« = Yyqo, - - . , Ym@m (Writing next to each stack symbol the state

that annotates it), and p’ and p have the same profile.

The base case of an empty run on a string is again immediate: if P’ has an empty run
from its initial state, then it reaches the instantaneous description with (S7,0) and empty

stack, and then PP has an empty run from any initial state ¢ to g so that indeed S; contains

<QOaQO)-

For the induction case, assume that P’ has a non-empty run p/, on w which produces
., We write again p/, as a run p’ followed by one single transition of P’. We know P’ has
a run p’ on w which produces p from the initial state S; to an instantaneous description
(S,1),/, with « = Ty ... T,,. By the induction hypothesis, we know that for any choice
of elements (qo, Y0, 20) € To, (Po,71,P1) € T1s oo (Pm—1, Vi, Pm) € T and (pm, q) € S,
then P has a run p on w which produces p from some initial state g, to the instantaneous
description (g, 1), @ with &« = Yoqo, - - - , YmGm, and p and p’ have the same profile. We now

distinguish on the type of transition used to extend p’ to p/, .

105

If the last transition is a read-write transition (S, (a,), S") with S” defined as in the
construction, consider any choice of (qo, Y0, o) € 1o, (Po, V1,P1) € 115 ees (Pm—1, Yin, Pm) €
T,, and (p,,,q") € S, and then there must be some state p” such that (p”, (a,8),q) € A
and (p,,p") € S. Using the induction hypothesis but picking (p,,,p”) € S, we obtain a
run p of P on w which produces i, with the correct stack and ending at position ¢ on state
p”, which we can extend by the read transition (p”, (a,), q) to reach state ¢ at position

¢ + 1 without touching the stack, proving the result.

If the last transition is a read transition (S, a, S") with S” defined as in the construction,

we follow an analogous reasoning.

If the last transition is a push transition (.S, 5", T") with 7" defined as in the construction,
consider any choice of (qo,v0,20) € Tos (Po,V1,01) € T1s wovs (Pm—15YmsPm) € T,
(P, Yma1s Pms1) € Trner and (i1, ¢’) € S’. We know that we must have ¢ = p,.1,
and that there must be some state p” and push transition (p”, p;,+1, Ym+1) and pair (py,, p”)
in S. Using the induction hypothesis but picking (p,,,p”) € S, we obtain a run p of P
on w which produces p with topmost stack symbol ,,, ending at state p”, which we can
extend with the push transition (p”, Py, +1, Ym+1) to obtain the desired stack and reach state

Pmi1 = ¢, proving the result.

If the last transition is a pop transition (S, 7', S") with S’ defined as in the construction,
consider any choice of (qo, Y0, po) € To, (Po, 71, 1) € T1s oes (Pm—2, Ym—1,Pm—-1) € Trn15
and (p_1,q) € S’. We know that there is a pair (p', ¢’') € S and a triple (p,,_1, Ym, P') in
T, and a pop transition (¢’, vy, q) in A. Applying the induction hypothesis, we get a run
p of P on w which produces p and with topmost stack symbol ~,,, annotated with state p’
and ending at state ¢’. The pop transition (¢’, v,,, ¢) allows us to extend this run to reach
state ¢ and remove the topmost stack symbol, while the rest of the stack is correct, proving

the result.

Again, we have ensured that p is extended to p, with the same transition as the tran-

sition used to extend p’ to p/_, ensuring that p, and p’_ have same profile. This concludes

106

the proof of the backward induction, ensuring that if P’ has a run from S; to some final
state .S reading a string w and producing u, and having (qo, gr) with ¢¢ € F in S, then P
has a run reading w which produces p going from ¢ to the final state g;. This concludes

the backward implication and completes the proof. U

We can now show Theorem 4.3 via Proposition 4.7, using also the notion of profiled

PDAnn defined in Section 4.4:

Let G be a rigid annotated grammar. Using Proposition 4.7, we transform it in poly-
nomial time to a profiled PDAnn P. Using Lemma 4.1, we build in exponential time an

equivalent PDAnn P’ satisfying the conditions of the lemma.

We know that P’ is still profiled. Indeed, if we assume by contradiction that there
is a string w on which P’ has two accepting runs with different profiles, then by the last

condition of Lemma 4.1, the same is true of P, contradicting the fact that P is profiled.

Now, we claim that P’ is necessarily also unambiguous. To see why, consider two
accepting runs p and p’ of P’ on some string w. Since P’ is profiled, p and p’ must have
the same profile. But now, the conditions of Lemma 4.1 ensure that, knowing the input
string w and profile, the runs p and p’ are completely determined. Specifically, this is an
immediate induction on the run. The base case is that there is only one initial state, so both
p and p’ must have the same initial state. Now, assuming by induction that the runs so far
are identical and have the same stack, there are three cases. First, if the profile tells us that
both runs make a push transition, the symbol pushed and state reached are determined by
the last states of the runs so far, which are identical by inductive hypothesis. Second, if
the profile tells us that both runs make a read-write transition (or read transition), the state
reached is determined by the input and output symbols (or just the input symbol), and by
the last states of the run so far, which are identical by inductive hypothesis. Third, if the
profile tells us that both runs make a pop transition, the state reaches is determined by the
last state of the run so far, and the topmost symbol of the stack, which are identical by

inductive hypothesis. This concludes the inductive proof.

107

Thus, for any two accepting runs p and p’ on the string w which produce the same
output, they must identical. Thus, P’ is unambiguous. We use Theorem 4.7 to transform
P’ back into an annotated grammar, which is still rigid and unambiguous, and equivalent
to the original rigid annotated grammar G. The overall complexity of the transformation
is in O((21919")") for some ¢, ¢, " > 0, so it is in O(2/91") for some d > 0 overall, and

the time complexity is as stated. U

Expressiveness of rigid grammars. Armed with Theorem 4.3, we study what is the
expressive power of rigid grammars. For this, let us first go back to the setting without
annotations. Theorem 4.3 tells us that for (unannotated) CFGs the rigidity requirement
is equivalent to the usual unambiguity requirement: each accepted word has a unique
derivation. Now, for the case of an annotated grammar G, rigidity additionally imposes the
requirement that all annotations of an input string have the same parse tree. In particular,
the language of the strings where G accepts some annotation must be recognizable by a

rigid (unannotated) CFG, hence an unambiguous CFG (by Theorem 4.3). Formally:

PROPOSITION 4.4. For a rigid grammar G, let L' be the set of strings with nonempty

output, i.e., L' = {w | [G](w) # O}. Then L' is recognized by an unambiguous CFG.

PROOF. This proof is based on extending the definitions of unambiguity and rigidness
of annotated grammars over unannotated context-free grammars. Indeed, an unambiguous
annotated grammar with an empty output set is just an unambiguous CFG, and a rigid
annotated grammar with an empty output set is a CFG for which every derivation of a

given string w € X* has the same shape.

Consider the (unannotated) grammar G’ obtained from G by removing all annotations
on terminals, and making 2 = (). It can be seen that L(G’) = L’ since for each string
w, if w € L(G’), then there is at least one w € L(G) with str(w) = w and vice versa.
Now, we claim that G’ is rigid, by extending the notion onto CFGs in the obvious way. To
see this, consider a string w € L(G'); all derivations of w by G’ correspond to derivations

by G of some @ such that str(w) = w. Because G is rigid, all these derivations have the

108

same shape. Now, using Theorem 4.3, we can compute a rigid and unambiguous grammar
G" recognizing the same language over >* as G’, i.e., L'. But as L’ is a language without
output, the unambiguity of G” actually means that G” is an unambiguous CFG. Hence, L'

is recognized by an unambiguous grammar, concluding the proof. U

This yields concrete examples of languages (on the empty annotation alphabet) that
cannot be recognized by a rigid annotated grammar, e.g., inherently ambiguous context-
free languages such as L, = {a'V/c* | i,5,k > 1A (i =3V j=k)}on{a,b,c}* (Maurer,
1969). Proposition 4.4 also implies that we cannot decide if the language of an annotated

grammar can be expressed instead by a rigid grammar, or if an annotated grammar is rigid:

PROPOSITION 4.5. Given an unannotated grammar G, it is undecidable to determine
whether G is rigid, and it is undecidable to determine whether there is some equivalent

rigid grammar G'.

PROOF. We first show the undecidability of checking if an annotated grammar has an

equivalent rigid annotated grammar:

CLAIM 4.1. Consider the problem, given an annotated grammar G, of determining
whether there exists some equivalent rigid annotated grammar equivalent to G. This prob-

lem is undecidable.

PROOF. We reduce from the problem of deciding whether the language L, of an input
(unannotated) context-free grammar G, can be recognized by an unambiguous context-
free grammar: this task is known to be undecidable (Ginsburg & Ullian, 1966). Consider
G- as an annotated grammar (with empty annotations). Let us show that L, can be recog-
nized by a rigid annotated grammar iff it can be recognized by an unambiguous context-
free grammar, which concludes. For the forward direction, if L, can be recognized by an
unambiguous context-free grammar, then that grammar is in particular rigid. For the back-

ward direction, if Lo can be recognized by a rigid grammar, then Proposition 4.4 implies

109

that Lo can also be recognized by an unambiguous context-free grammar. Thus, we have

showed that the (trivial) reduction is correct.]

We next show that it is undecidable to check if an input annotated grammar is rigid:

CLAIM 4.2. Consider the problem, given an annotated grammar G, of determining

whether it is rigid. This problem is undecidable.

PROOF. We adapt the standard proof of undecidability (Chomsky & Schiitzenberger,
1959, Ambiguity Theorem 2) for the problem of deciding, given an input unannotated
grammar G, if it is unambiguous. The reduction is from the Post Correspondence Problem
(PCP), which is undecidable: we are given as input sequences o, ..., «, and [y, ..., 5,
of strings over some alphabet ., and we ask whether there is a non-empty sequence of
indices i1, . .., i, of integers in [1, n] such that «v;, ..., = f;, ... (;,,. Given the input
sequences g, ...,a, and fi,..., 3, to the PCP, we consider the alphabet >’ = ¥ U
{1,...,n}, and we consider the CFG having nonterminals S, S, and Ss, start symbol .S,
and rules S — 51, S — 55, 51 — €, 95 — ¢, and for each 1 < i < n the productions
S1 — «;S1t and Sy — [3;551.

We claim that this grammar is ambiguous iff there is a solution to the Post correspon-
dence problem. Indeed, given any solution «v;, - - - o;,, = 4, ... (s, , considering the string
iy QG T 11 = By -+ Bi, im - - - 11, We can parse it with one derivation featuring S
and one derivation featuring S;. Conversely, if we can parse a string w € X* with two
different derivations, we know that there cannot be two different derivations featuring S;.
Indeed, reading the string from right to left uniquely identifies the possible derivations
from S;. The same argument applies to derivations featuring S;. Hence, if the grammar
is ambiguous, then there is exactly one derivation featuring S; and exactly one derivation
featuring S;. These two derivations can be used to find a solution to the Post correspon-

dence problem.

110

We now adapt this proof to show the undecidability of rigidity. We say that an input
to the PCP is trivial if there is ¢ such that a; = ;. We can clearly decide in linear time,
given the input to the PCP, if it is trivial. Hence, the PCP is also undecidable in the case
where the PCP is non-trivial. Now, when doing the reduction above on a PCP instance
that is not trivial, we observe that two derivations of the same string can never have the
same sequences of shapes. Indeed, if we have two derivations of the same string, then as
we explained one must feature S; and the other must feature Ss, and they give a solution
o, oy, = B, ... 0B, tothe PCP. Assume by contradiction that both derivations have
the same sequences of shapes. Then, it means that we have |aij| = |ﬁij‘ for every 1 <
J < m. In particular we have |«;,| = |3;,|, and so we know that ;, = f3;, and the PCP

instance was trivial, a contradiction.

Hence, let us reduce from the PCP on non-trivial instances to the problem of deciding
whether an input annotated grammar is not rigid. Given a non-trivial PCP instance, we
construct G as above, but seeing it as an annotated grammar with no outputs. Then G is
not rigid iff there is a string w such that the empty annotation of w has two derivations that
do not have the same sequence of shapes. But this is equivalent to G being unambiguous
when seen as a CFG. Indeed, for the forward direction, if G has two such derivations on a
string w then clearly w witnesses that G is ambiguous when seen as a CFG. Conversely,
if G is ambiguous when seen as a CFG, we have explained in the previous paragraph that
the two derivations must have different sequences of shapes, so G is not rigid. Hence, we
conclude that there is a solution to the input non-trivial PCP instance iff G is not rigid.

This establishes that the problem is undecidable and concludes the proof. U

The proof follows from Claims 4.1 and 4.2. U

These undecidability results make rigid grammars less appealing, but note that our
enumeration algorithm for such grammars applies in particular to decidable grammar

classes which are designed to ensure rigidity. For instance, this would be the case of

111

grammars arising from visibly pushdown automata, which we discuss in more detail in

the next section.

Enumeration algorithm. We now give our algorithm with quadratic preprocessing time
for rigid grammars. Given a rigid grammar, we first make it unambiguous if necessary,
using Theorem 4.3, in exponential time in the input grammar. The result is a rigid and
unambiguous annotated grammar. Now, we transform it in 2NF like in Section 4.3: this

takes linear time, preserves unambiguity, and one can check that it also preserves rigidity.

Armed with our rigid and unambiguous grammar G in 2NF, we can simply use Al-
gorithm 3 to construct a data structure allowing us to enumerate the outputs with output-
linear delay. But we now claim that Algorithm 3 runs in time O(|G] - |w|?) because G

is rigid.

For this, we study for every nonterminal X and pair 1 < ¢ < j < n+1 how many times
we can consider the cell 1[:][j][X] in lines 20-23. Whenever we consider it, we witness
the existence of a complex rule X — Y Z and a value k such that I[i|[k][Y] and 1[k][5][Z]
are nonempty (the first is because i € endIn[k|[Z]). Thus, we witness a derivation from
X of some annotation of the string a; - --a;_; that starts with a rule X — Y Z where
Y derives some annotation of the string a; - - - ax_1 and Z derives some annotation of the
string ay, - - - aj_1. We now claim that, for (¢, j, X), the rigidity of the grammar ensures that
there is only one such value k. Indeed, assume by contradiction that we have two rules
X = YZand X — Y'Z' and two values i < k < k’ < j such that Y and Y” respectively
derive some annotation of the strings a; - - - a5_1 and a; - - - a1, and Z and Z' respectively
derive some annotation of the strings ay - - - a;—; and a - - - a;_;. Then once we are done
rewriting Y and all the nonterminals that it generates in the first derivation, we obtain a
different shape from what we obtain after rewriting Y’ and all the nonterminals it generates

in the second derivation, contradicting the rigidity of the grammar.

Thus, whenever we consider the cell I[¢][j][X] in lines 21-23, it is for one value of k

which is unique for (7, j, X), and we thus consider the cell once at most for every complex

112

rule of the grammar with X as left-hand-side. Thus, we consider the cells of I[i][;] at
most |G| times in total. As there are O(n?) pairs (i, j), this ensures that the total running
time of the innermost for loop (lines 19-23), and that of the entire algorithm, is indeed in

O(IG] - [w]*):

Theorem 4.4. Given a rigid annotated grammar G and an input string w, we can
enumerate [G](w) with preprocessing in O(|w|?) data complexity and output-linear delay
(independent from w or G). The combined complexity of the preprocessing is O(2/9° - |w|?)

for some ¢ > 0, or O(|G| - |w|?) if G is additionally assumed to be unambiguous.

Optimality. We now turn to the question of whether the quadratic preprocessing time for
rigid grammars is optimal. For this, we notice that the parsing of (unannotated) unam-
biguous grammars can be performed in quadratic time, but the question of finding a better
algorithm was open as of 2012 (Schmitz, 2012). Now, this is a special case of our problem,
because an unannotated unambiguous grammar is in particular a rigid and unambiguous
annotated grammar, and enumerating the outputs of an unannotated grammar just means
deciding in constant time after the preprocessing whether the input unannotated string is

accepted or not. Thus:

PROPOSITION 4.6. Any algorithm to enumerate the accepted outputs of a rigid an-
notated grammar can be used to test if an input string is accepted by an unambiguous

unannotated grammar, with same complexity as that of the preprocessing phase.

PROOF. Assume we have such an algorithm 4. Consider a procedure which receives
an unambiguous unannotated CFG G and an input string w, converts G into an annotated
grammar G’ with empty output set. Since G’ is unambiguous and rigid, we can run A over
G' and w. If w € L(G), then [G'](w) = {e}, and if w & L(G), then [G'](w) = 0. Thus,
after the preprocessing phase of .A we need only to wait a constant amount of time to see
if the string ¢ is given as output, or none is. We conclude that this procedure solves the

problem with the same complexity as the preprocessing phase of A. U

113

For this reason, we leave open the question of whether a better than quadratic prepro-

cessing time can be achieved in this case.

4.4. Pushdown Annotators

We have presented an enumeration algorithm for annotated grammars that achieves
quadratic-time preprocessing and output linear delay on rigid annotated grammars. We
now study whether the bound can be improved even further to achieve linear-time prepro-
cessing and output-linear delay, which is the best possible data complexity bound in our

model.

To achieve this, it is natural to look for a class of grammars having some “determin-
istic” behavior. Unfortunately, grammars are not convenient for this purpose, and so we
move to the equivalent model of pushdown automata. We thus introduce pushdown an-
notators and show that they are equally expressive to annotated grammars. We present
syntactic restrictions on pushdown annotators that ensure quadratic-time preprocessing,
similarly to rigid grammars. Then, we propose additional deterministic conditions on

pushdown annotators that allow for linear-time preprocessing.

Pushdown annotators. A pushdown annotator (PDAnn) is a tuple P = (Q, %, Q, ', A,
qo, F') where @ is a finite set of states, Y. is the alphabet, (2 is a finite set of annotations, I’
is a finite set of stack symbols, qy € Q) is the initial state, and F' C () are the final states.
We assume that the set I' of stack symbols is disjoint from (X U X x). Finally, A is a

finite set of transitions that are of the following kinds:

e Read-write transitions of the form (p, (a,5),q) € @ x (X X Q) X (), meaning
that, if the next letter of the string is a, the annotator can go from states p to ¢
while reading that letter and writing the annotation &;

e Read-only transitions of the form (p,a,q) € @ x ¥ X @, meaning that the

annotator can go from p to ¢ while reading a;

114

e Push transitions of the form (p, ¢,v) € Q x (Q x I'), meaning that the annotator
can go from p to ¢ while pushing the symbol 7 on the stack;

e Pop transitions of the form (p, v, q) € (@ xI') x), meaning that, if the topmost
symbol of the stack is 7, the annotator can go from p to ¢ while removing this

topmost symbol 7.

We now give the semantics of PDAnns. Fix a string w = wy - - - w,, € X*. A configu-
ration of P over w is a pair C' = (q,i) € @ x [0, n] of the current state and position in w.
An instantaneous description of P is a pair (C, o) where C' is a configuration and o € T**

describes the stack. A run of P over w is a sequence:

p = (Co) = (Cr,0n) -2 ... 2% (Crn,) (4.1

such that Cy = (go,0) and a = ¢, each t, is a transition in A, and for each k € [1,m)]

the following hold:

e if ¢; is a read-write transition (p, (a, &), q) or a read-only transition (p, a, ¢), then
ar = -1, Cr_1 = (p,i — 1), Cx = (q,7) and a = q; for some ¢ € [1, n];

e if ¢} is a push transition (p, q,7), then ap, = «j_17y and for some i € [1,n],
Cr—1 = (p,i), Cx = (¢,7); and

e if t is a pop transition (p,7,q), then ay_; = a4y and for some i € [1,n],

Ck—l - (pul)a Ck - (Q7l)

We say that p is accepting if (C,, o) = ((qr,n),€) for some ¢y € F. We define the
annotation of p as ann(p) = ann(t,,Cy) - - - - - ann(t,,, Cy,) such that ann(t,C) = ¢ if ¢
is a push, pop, or a read-only transition (p, a, q), and ann(t, C') = (i, o) if ¢ is a read-write
transition (p, (a,), q) and C' = (g, 7). Finally, we define the function [P] that maps any

w € X7 to its set of outputs:

[P](w) = {ann(p) | p is an accepting run of P over w}.

115

Similarly to annotated grammars, we say that P is unambiguous if for every w € ¥* and

output 4, there exists at most one accepting run p of P over w such that ann(p) = u.

One can alternatively see a PDAnn as a pushdown transducer (Berstel, 2013), which is
the standard way to extend automata to have an output. However, an important difference
is that a PDAnn concisely represents outputs by only writing the annotations and their
positions: this can be much smaller than the input string, and cannot easily be encoded
as a transducer on a finite alphabet. For instance, where a PDAnn can produce an output
such as (2, 8), (5, &), a transducer would either write 5. (losing the position information)

or _ 6. .. 8. (whose length is always linear in the input) for a special symbol _.

Profiled PDAnns and annotated grammars. To define the analogue of rigid annotated
grammars on PDAnn, we will study the stack profile (or simply profile) of PDAnn runs,
which is informally the sequence of all stack heights. Formally, let P be a PDAnn, w be a
string, and consider a run p of 7 over w like in (7). The profile 7 of p is the sequence 7 :=
lagl, . .., || We then introduce profiled PDAnns by requiring that all accepting runs of
the PDAnn on an input string have the same profile (no matter their output). Formally, we
say that a PDAnn P is profiled if, for every string w, all accepting runs of 7 over w have

the same profile.

As usual for context-free grammars and pushdown automata, the formalisms of an-
notated grammars and PDAnn have the same expressive power. We call two annotated
grammars G and G’ equivalent if they define the same functions, i.e., [G] = [G'], and

extend this notion to PDAnn in the expected way. We then have:

PROPOSITION 4.7. Annotated grammars and PDAnn are equally expressive. Specifi-
cally, for any annotated grammar G, we can build an equivalent PDAnn P in polynomial
time, and vice versa. Further, G is unambiguous (resp., rigid) iff P is unambiguous (resp.,

profiled).

116

PROOF. In this proof, we will need to use the standard notion of a pushdown automa-

ton (PDA), whose definition has been omitted so far. We give it here:

Definition 4.2. A pushdown automaton (PDA) is a tuple A = (Q,%, T, A, qo, F),
where () is a finite set of states, X is the alphabet, 1 is a finite alphabet of stack symbols,
Qo € @ is the initial state, F' C () are the final states. We assume that " is disjoint from X..

Further, A is a finite set of transitions of the following kind:

e Read transitions of the form (p, a, q) € @ X ¥ X), meaning that the automaton
can go from state p to state q while reading the letter a;

e Push transitions of the form (p, q,7v) € Q X Q x I, meaning that the automaton
can go from state p to state q while pushing the symbol y on the stack;

e Pop transitions of the form (p,v,q) € Q x I' X Q, meaning that, if the topmost
symbol of the stack is v, the automaton can go from p to q while removing this

topmost symbol .

We omit the definition of the semantics of PDAs, which are standard, and allow us to
define the language L(.A) accepted by a PDA. It is also well-known that CFGs and PDAs
have the same expressive power, i.e., given a CFG G, we can build in polynomial time a

PDA A which is equivalent in the sense that L(G) = L(.A), and vice-versa.

We will also need to use the standard notion of a deterministic PDA (with acceptance

by final state). Formally:

Definition 4.3. Let A = (Q,%,T,A,qo, F) be a PDA. For p € Q, we define the
next-transitions of p as the set A(p) of all transitions in A that start on p, i.e., A(p) =
{(p,z,y) | (p,x,y) € A}. We say that a PDA A is deterministic if for every state q € Q,

one of the following conditions hold:

(@ A(g) CQxXxQand|{qd | (q,a,q¢) € A}| <1 foreach a € ¥. Informally,
all applicable transitions are read transitions, and there is at most one such

applicable transition for each letter.

117

(b) A(q) CQ x(QxT),and |A(q)| < 1. Informally, all applicable transitions are
push transitions, and there is at most one such transition from q.

©) Alg) C(QxT)xQand |{q | (¢,7,¢)} < 1foreach~ € I'. Informally, all
applicable transitions from q are pop transitions, and there is at most one such

applicable transition for each stack symbol.

It is clear that the definition ensures that, on every input string w, a deterministic PDA
A has at most one run accepting w, so that we can check in linear time in A and w if
w € L(A). Further, it is known that deterministic PDAs are strictly less expressive than

general PDAs.

In order to prove the statement of Proposition 4.7, let us first give the formal definitions
needed for the result. We say that two annotated grammars G and G’ are equivalent if they
define the same functions, i.e., [G] = [G']. We define equivalence in the same way for

two PDAnns, or for an annotated grammar and a PDAnn.

We first show one direction:

CLAIM 4.3. For any annotated grammar G, we can build an equivalent PDAnn P in
polynomial time. Further, if G is unambiguous then so is P. Moreover, if G is rigid, then

P is profiled.

PROOF. This is a standard transformation. Let G = (V, 3, Q, P, S). We build a PDAnn
P=(Q,%2,0T, A q,F) as follows: For every rule X — « of G and position 0 < i <
||, the PDAnn P has a state (X, a, @) in (), plus a special state gy which is the only initial

and only final state. Also, I' = (). The set A has the following transitions:

e A push transition (qo, (5, @, 0), go) and a pop transition ((S, «, |e|), g0, qo), for
every rule S — a.
e For each state (X, a, |a) for a production X — «, a pop transition reading a

state from the stack and moving to that state.

118

e For each state (X, o, i) where the (i + 1)-th element of o (numbered from 1) is
a nonterminal Y, for every rule Y — /3, a pop transition pushing (X, o, i + 1),
and moving to (Y, 3,0).

e For each state (X, «, 7) where the (i 4+ 1)-th element of v (numbered from 1) is
a terminal 7, a read transition moving to (X, a, 7 + 1) reading the symbol of 7

and outputting the annotation of 7 (if any).

We will show a function that maps a given leftmost derivation S =¢g 71 =¢ ... =¢
Ym = W into a run in P. To do this, we convert is sequence of productions into a sequence
of strings which has the same size as the run (minus one). These strings serve as an
intermediate representation of both the derivation and the run. The process is essentially

to simulate the run in P.

e First, we reduce the derivation into a sequence of productions X; = v, Xo =
Yo, ..., Xm = Ymn Which uniquely defines the derivation.

e The alphabet in which we represent strings that produce other strings include
two special markers | and 1.

e We start on the string | S 7.

e If the current string is u | X /3, and it is the ¢-th one that has reached a string of
this form, then it must hold that X = X;. We follow it by @ | ~; T 5.

e If the current string is @ | 7/3, for some terminal 7, we follow it by ur | 5.

e If the current string is u |1 3, then we follow it by @ | .

e If the current string is @ |, there is no follow up.

Interestingly, this function is completely reversible, since to obtain a sequence of produc-
tions from a sequence of strings in this model, all we need to do is to remove the markers
J and 1 and eliminate the duplicate strings that appear. We will borrow the name splain to
talk about the function which receives a string and returns one which deletes all markers.

It is obvious that the resulting derivation is the original one.

119

Furthermore, and more interestingly, we can extend the function shape to receive one
of these strings and return a string in the alphabet {0, 1,],1}. For two derivations that

have the same shape, the resulting sequences have the same shape as well.

This sequence of strings represents a run in P almost verbatim, and we only need
to adapt it into a sequence of pushes, pops and reads: We make a run p which starts on
o, pushes (X, 1, 0) to the stack, and moves to the state (X, 1, 0). This pairs exactly to
the strings | S and | 7; 1, which are the first two in the sequence. Then, we read the
sequence of strings in order. If the current string is u | X[, and this is the ¢-th time a
string of this form is seen, then the current state must be (Y, ay X;an, k), where || = k;
we push (Y, a; X;a0, k + 1) onto the stack, and move to the state (X;,7;, 0). If the current
string is & | a3 for some a € X, and the current state is (X, 7, k), we read 7, and move
to the state (X, ~, k). If the current string is @ | (a,) for some a € X, and the current
state is (X, v, k), we read a, output 5; and move to the state (X, ~, k). If the current string
is u |1 [, we pop the topmost state from the stack and we move into that state. It is
straightforward to see that this run represents exactly the leftmost derivation S =§ w,
and that for each annotated string w € L(G) if and only if there is a run of P over w that

produces p = ann(w) as output.

This function is also reversible. Consider a run of P over a string w which produces p
as output. This run must start on g, and then push ¢y and move onto a state (.5, o, 0) for
some rule S — «. Thus, our first two strings in the sequence are | S 1 and | « 1. If the
current state is (X, a, k) and the next transition is to push (X, «, k + 1) onto the stack to
move into the state (Y, 0), then the current string is of the form @ | X 3, so we follow it
by the string @ | v 1 5. If the next transition is a pop, then the current string is % |1 3, so
we follow it by @ | S. If the current transition is a read, then the current string is @ | a3
for a € ¥, so we follow it by a7 | (. If the current transition is a read-write, then the
current string is @ | (a,8)5 for (a,5) € X x €, so we follow it by @(a,s) | 5. It can
easily be seen that using the original function over this resulting sequence would give the

original sequence back. We point that these two reversible functions mean that there is a

120

one to one correspondence between derivations of S =7 « and accepting runs of P over

w with output © = ann(w).

Similarly to the observation we made before, we notice that if we start on a sequence
in the intermediate model, the profile of the resulting run p is fully given by the shape of
the sequence (at each step, the size of the stack will be equal to the number of markers 1

present in the string).

Now assume that G is unambiguous. Seeing that P is unambiguous as well comes

straightforwardly from the fact that the functions presented above are bijective.

Assume now that G is rigid. Let w be an unannotated string and consider two runs
p1 and py of P over w which output pq and po respectively. Convert these two runs
into sequences &7 and S; in the intermediate model. Note that if we convert these two
sequences into derivations S =% p;(w), they will have the same shape. We can apply the
functions above to obtain the two runs p; and p, back, and note that they have the same

profile. We conclude that if G is rigid, then P is profiled. O

We then show another direction:

CLAIM 4.4. For any PDAnn P, we can build an equivalent annotated grammar G in
polynomial time. Further, if P is unambiguous then so is G. Moreover, if P is profiled,

then G is rigid.

PROOF. This is again a standard transformation. We first transform the input PDAnn
P=(Q,%,QT,A q,F) to accept by empty stack, i.e., to accept iff the stack is empty.
To do this, we build an equivalent PDAnn P’ = (@', X, Q, IV, A’ ¢}, F') where Q' =
QU{q) e, qr}, I" =T U {0}, F = {qr}, and we add the following transitions to A to
obtain A": A push transition (g, o, 7o), @ pop transition (g, v, ¢) for every ¢ € F (for
runs that accept at a point where the stack is already empty), plus a pop transition (g, v, g.)

for any other v € I', and a pop transition (., go, ¢r)-

121

This clearly ensures that there is a bijection between the accepting runs of P and those
of P’: given an accepting run p of P, the bijection maps it to an accepting run of P’
by extending it with a push transition at the beginning, and pop transitions at the end.
Further, all accepting runs in P’ now finish with an empty stack, more specifically a run is

accepting iff it finishes with an empty stack.

Now, we can perform the transformation. The nonterminals of the grammar are triples
of the form (q,~, ¢') for states ¢ and ¢’ and a stack symbol ~. Intuitively, (p,~,q’) will
derive the strings that can be read by the PDAnn starting from state p, reaching some other
state ¢ with the same stack, not seeing the stack at all in the process, and then popping v

to reach ¢'.

The production rules are the following:

e Arule S — (qo, 70, qf)-
e Arule (p,v,q) — (¢,7,7r)(r,7,q") for every nonterminal (p,~, ¢’), push tran-
sition (p, ¢,7') € A and state .

e Arule (p,7,q) — ¢ for each pop transition (p, 7y, q) € A.
q

/

)
") = (a,8)(q, 7, ¢") for each read-write transition (p, (a, s, ¢), and
q)

a rule

e Arule (p,~,
(p, — a(q,,q') for each read transition (p, a, q), for each nonter-
(P,

minal !)
As we did in Proposition 4.3, we will show a function which receives an accepting
run p over w in P with output x and outputs a leftmost derivation S = a3 =¢ ay =¢
. =¢ a, = p(w). The way we do this is quite straightforward: There is a one-to-
one correspondence between snapshots in the run to each «;. Indeed, it can be seen that
a; = u(qr, 71,92)(q2,72,93) - - - (qr, Yk, qr) for some string & € (X U (X x Q))*, some
states ¢y, . . . , ¢, and stack symbols 7y, . . ., 7. Moreover, the i-th stack in the run is equal
to 7172 . . . Yk, Whereas each state g; is the first state that is reached after popping the re-

spective 7;_1. We see that this function is fully reversible, as each production corresponds

122

unequivocally to a transition in particular. This implies that P is unambiguous if, and only

if G is unambiguous.

For the next part of the proof, we bring attention to the fact that there are exactly four
possible shapes on the right sides of the rules in G. Each of these directly map to some type
of transition, be it the initial push transition (g, g0, 7o), a different push transition, a pop
transition, or a read (or read-write) transition. To be precise, these shapes are the strings
1, 11, € and 01 respectively. From here it can be easily seen that, while comparing a run
p to is respective derivation S =7 w0, each production in the run immediately tells which
type of transition was taken, and each transition in the run immediately tells which rule
(and therefore, rule shape) was used. Therefore, each derivation shape maps to exactly
one stack profile and vice versa, from which we conclude that P is profiled if, and only if,

G is rigid. |

The proof now follows from Claims 4.3 and 4.4, O

Let us now study the enumeration for PDAnns. We know that the problem for unam-
biguous PDAnns can be solved via Proposition 4.7 with cubic-time preprocessing in data
complexity and output-linear delay (with Theorem 4.2). We know that profiled PDAnns
can be made unambiguous (via Proposition 4.7 and Theorem 4.3) and so that we can solve
enumeration for them in quadratic-time preprocessing in data complexity and output-linear
delay (using Theorem 4.4). We now show that, if we are given a profile of an unambigu-
ous PDAnn P on an input string w, we can use it as a guide to enumerate with linear
preprocessing and output-linear delay the set [P]_(w) of annotations for that profile, i.e.,

all ann(p) such that p is an accepting run with profile 7 of P over w. Formally:

Lemma 4.2. Given an unambiguous PDAnn ‘P, there exists an enumeration algorithm
that receives as input a string w and a profile ™ of P over w, and enumerates [P]_(w)

with output-linear delay after linear-time preprocessing in data complexity.

123

PROOF. We will show a linear-time reduction to enumeration for an unambiguous

VPAnn (see Chapter 3).

The theorem we use can be stated as follows:

Theorem 4.5. (Theorem 3.1) There is an algorithm that receives an unambiguous
VPAnn T = (Q, S, 1,0, A, g, F) and an input string w, and enumerates the set [T](w)

with output-linear delay after a preprocessing phase that takes O(|Q|* - |A| - |w|) time.

The rest of the proof will consist on showing a linear-time reduction from the problem
of enumerating the set [P]_(w) for an unambiguous PDAnn P and input string w to the
problem of enumerating the set [7](w’) for an unambiguous VPAnn 7, and input string

w'.

Let P = (Q,%,Q,',A, qo, F) and let w € X* be an input string. Consider the
structured alphabet & = ({<},{>},2) for some <,> ¢ ¥. Assume m = 7y, ..., T,
We construct a well-nested string w’ = by ---b,,_1 where b; = <if m; > w1, b; = <
if m; < 11, and b; = w; otherwise, where ¢ is the j-th index in which m; = m;,. We
also build a table Ind such that Ind(i) = j for each of the indices in the third case. We
build a VPAnn 7 = (Q, ST, 0, A, I, F) where I = {q} and we get A’ by replacing
every push transition (p,q,v) € A by (p, <,q,7) and every pop transition (p,v,q) € A

by (p, >, q,). Note that read and read-write transitions are untouched.

Let w be an input string, and let p be an output. Consider the output z/ which is
obtained by shifting the indices in y to those that correspond in w’. We argue that for each
run p of P over w with profile = which produces p, there is exactly one run p’ of 7 over w’
which produces 4/, and vice versa. We see this by a straightforward induction argument
on the size of the run. This immediately implies that for each output ;1 € [7](w) there
exists exactly one output 1/ € [P]_(w), which has its indices shifted as we mentioned.
The algorithm then consists on simulating the procedure from Theorem 4.5 over 7 and
w’, and before producing an output u, we replace the indices to the correct ones following

the table Ind. The time bounds are unchanged since the table Ind has linear size in m, and

124

replacing the index on some output y can be done linearly on |u|. We conclude that there is
algorithm that enumerates the set [P]_(w) with output-linear delay after a preprocessing

that takes O(|Q|? - |A| - |7|) time. O

This result implies that we could achieve linear-time enumeration over profiled PDAnn
if we could easily discover their (unique) profile. We achieve this in deterministically

profiled PDAnns.

Deterministically profiled PDAnn. Let P = (Q, %, Q, ', A, qo, F') be a PDAnn. We say
that a PDAnn P is deterministically profiled if, for any string w € >*, for any two partial

runs p and p’ of P over w with the same length, p and p’ have the same profile.

The relationship between deterministically profiled PDAnns and deterministic push-
down automata is similar to the relationship between profiled PDAnns and unambiguous
pushdown automata (the latter relationship was stated as Proposition 4.4 in the context of

grammars).
Specifically:

PROPOSITION 4.8. For a deterministically profiled PDAnn P, let L' be the set of
strings with nonempty output, i.e., L' = {w | [P](w) # 0}. Then L' is recognized by a

deterministic pushdown automaton.

PROOF. For this result, we use the notion of PDA (Definition 4.2) and deterministic

PDA (Definition 4.3) that were presented inside a previous proof.

As we have done in previous proofs, the strategy consists on starting with a profiled-
deterministic PDAnn P, and building a PDAnn P’ by eliminating the output symbols from
each transition. This PDAnn behaves almost identically to a pushdown automaton 4 in
the sense that if w € L(.A), then [P](w) = {e}, and that if w & L(.A) then [P](w) = 0.
Whenever this holds, we say that the PDAnn and the pushdown automaton are equivalent.

It is simple to see that for this A it holds that L(.A) = L’. To conclude the proof, we must

125

show that 4 can be made deterministic. Without loss of generality, we remove from A all

inaccessible states, i.e., all states for which there is no run that goes to the state.

First, we will prove that the PDAnn P’ is profiled-deterministic. Let w be a string
in X* and let p| and p), be two partial runs of P’ over w with the same profile, and with
last configurations (¢,) and (¢’,7). There clearly exist partial runs p; and p, of P over
w with the same profile, which can be obtained by replacing each transition by one of
the transitions in P it was replaced by. Since P is profile-deterministic, then one of the
following must hold in P: (1) A(q) UA(¢) C Q x (XU X x) x Q, i.e., all transitions
from ¢ and ¢’ are read or read-write transitions; (2) A(g) U A(¢') C Q x (Q x I'), i.e.,
all transitions from ¢ and ¢’ are push transitions; or (3) A(q) UA(¢') C (@ xT') x @,
i.e., all transitions from ¢ and ¢’ are pop transitions. Note that if (2) or (3) hold, then in
the new PDAnn P the condition holds again in P’ trivially since none of the transitions
in A(q) and A(¢") was changed. Moreover, if (1) holds, then it can be seen that all of the
transitions that belonged in @ x (2 x Q) x () now belong in) x ¥ x), which also leaves

the condition unchanged in P’. We conclude that P’ is profiled-deterministic.

The next step is to use Lemma 4.1 from P’ to obtain an equivalent PDAnn P” which is
deterministic-modulo-profile. We will argue that if we start with P/, which was profiled-
deterministic, then the resulting P” is equivalent to a pushdown automaton .4’ which is
also deterministic. Let w be an input string in ¥* and let p” be a partial run of A over w
with last configuration (.5, 7) and with topmost symbol on the stack 7. Let us recall what

P” being deterministic-modulo-profile entails that the following conditions hold:
(i) There is at most one push transition that starts on .S; formally, we have:
HS, T e@" xT"|(S,8,T) e A} <1.

(i1) There is at most one pop transition that starts on .S, 7"; formally, for each -, we

have:

{S"€Q[(5,7,5) e A} <1

126

(iii) For each letter a, and output & € (2, there is at most one read-write transition

that starts on .S, a, &; formally, we have
HS" € Q" | (S,(a,5),5) e A"} <1.

(iv) For each letter a, there is at most one read transition that starts on .S, a; formally,

we have:

{ee Q"[(5,a,8) € A"} <1

‘We will show that at most one of these conditions holds. Recall that in the transformation,
the states of P” are sets which contain pairs of states (p,q) € Q' x @', and the stack
symbols are triples (p,v,q) € Q' x I x @)'. Now, recall the claim that was proven in the

lemma, on the backwards direction:

If P” has arun p” on a string w, producing output y, from its initial state to an instanta-
neous description (S,), o/ with o’ = Ty, . .., T,, being the sequence of the stack symbols,
then for any choice of elements (qo, Y0, P0) € Tos (Po,71,01) € T1y cvs (Pr—1,Yim, Pm) €
T, and (py,, q) € S it holds that P’ has a run p’ on w producing output i from some initial
state ¢ to the instantaneous description (g,), & with &« = Yoqo, - - - , YmGm (Writing next to

each stack symbol the state that annotates it), and p” and p’ have the same profile.

Since P’ is profiled-deterministic, then each run p'* which continues p’ by one step
must have the same shape. This implies that exactly one of the following conditions must

hold:

e The last transition in p'* is a read or read-write transition. Therefore, all transi-
tions from ¢ are either read or read-write transitions.

e The last transition in p'* is a push transition. Therefore, all transitions from ¢
are pop transitions.

e The last transition in p'* is a pop transition. Therefore, all transitions from ¢ are

pop transitions.

127

Assume bullet point 1 holds. Note that there are no read-write transitions in P’ so there
are only read transitions. From here, we prove that only (4) is true simply by inspecting
the transformation in the lemma; if (1) held, then there would be a push transition from ¢
in P’, if (2) held then there would be a pop transition from ¢ and ~ in P’, and (3) never
holds. Now, assume bullet point 2 holds. From here, we prove that only (1) can be true;
if (2) held, then there would be a pop transition from ¢ and ~ in P’, if (4) held, then there
would be a read transition from ¢ in P’, and again, (3) is never true. Lastly, assume bullet
point 3 holds. From here, we prove that only (2) can be true; if (1) held, then there would
be a push transition from ¢ in P’, if (4) held, then there would be a read transition from ¢
in P’, and yet again, (3) is never true. We conclude that from the 4 points, at most one of

these can be true at the same time.

Now we prove that the equivalent PDA A is deterministic. Let g be a state of A. As
all states of A are accessible, pick p” to be a run that reaches state q. We have argued that
at most one of the points in the list above is true of P’, and it cannot be point (3). Now,
we see that (a) is equivalent to (4), that (b) is equivalent to (1) and (c) is equivalent to (2).
Since only one of the conditions among (1), (2) or (4) can be true, the same holds for (a),
(b) and (c), from which we conclude that A is deterministic. This completes the proof.

g

This result gives a concrete picture of the expressive power of deterministically pro-
filed PDAnn A, i.e., as acceptors they are more powerful than the class of visibly push-
down automata (Alur & Madhusudan, 2004a), where each alphabet letter must have a
specific effect on the profile. Deterministically profiled PDAnn are also reminiscent of the
height-determinism notion introduced for pushdown automata (Nowotka & Srba, 2007),

but extend this with the support of annotations.

Deterministically profiled PDAnn are designed to ensure that they have only one pro-
file (i.e., they are profiled), and further that their unique profile can be constructed in linear

time:

128

PROPOSITION 4.9. A deterministically profiled PDAnn P is always profiled, and given
a string w, the unique profile of accepting runs of ‘P over w can be computed in linear

time in w.

PROOF. Consider a deterministically profiled PDAnn P. To prove that it is profiled,
consider an input string w € X*. We will prove by a simple induction argument that any
two runs of P over w have the same profile. The base case is trivial since the run is of
length 0, and the profile up to now is composed simply of the stack size 0. Assume now
that for each pair of runs p and p’ of P over w of size k, that they have the same profile.
We will show that for every pair of runs p; and p, over w of size k£ + 1, they have the same
profile as well. Note that the runs p; and p, that are obtained by removing the last step
have the same profile, by the hypothesis. From the definition of deterministically profiled
it can be directly seen that if (1) the last transition in p; is a read or read-write transition,
then for the runs p; and p, , the only choices are read or read-write transitions, from which
we deduce that the last transition in ps is a read or read-write transition as well, if (2) the
last transition in p; is a push transition, then for the run p; and p, the only choice are
push transitions, and therefore the last transition in p has to be a push transition as well,
and if (3) the last transition in p; is a pop transition, then for p; and p, the only choices
are pop transitions, so the last transition in p, must be a pop transition as well. We obtain
that p; and p, have the same profile, and from the induction argument, we conclude that

P is profiled.

Now, consider a deterministically profiled PDAnn P and an input string w. We will
prove that the unique profile of accepting runs of P over w can be computed in linear time
in |w|. The way we do this is by using the pushdown automaton .4 that was constructed in
Proposition 4.8. By inspecting the proof, it can be seen that the unique profile of P over w
is maintained throughout the construction. Indeed, the first construction simply removes
the output symbols, which does not affect the profile, and the second construction has an
invariant that keeps the profile intact as well. Therefore, by running the automaton A over

w, and storing the stack sizes at each step, we obtain a profile = which is exactly the same

129

profile of the accepting runs of P over w. To finish the proof, we only need to argue
that this profile has linear size on |w| (from a data complexity perspective). This follows
from the fact that any run of a deterministic pushdown automaton .4 over a string w has
O(f(A) x |w]) length, for some computable function f. This can be seen from a counting
argument: (1) There is a maximum stack size k that can be reached in an accepting run of
‘P over w from an empty stack through e-transitions, which is given by the number of states
in A. Otherwise, there are two configurations which are reachable from one another in a
way such the stack, as it was at the first configuration, is not seen. This implies that there
is a loop, and since 4 is deterministic, .A does not accept w. (2) From a given stack, the
maximum numbers of steps that can be taken without reading from w, and without seeing
the topmost symbol on the stack is given by the number of possible stacks of size k. (3)
Between a read (or read-write) transition and the next one, the maximum height difference
is k, and if we move out of a read (or read-write) transition with a certain stack, from (2)
we can see that we can only do a fixed number of steps before consuming some symbol
from this stack, and therefore, the number of steps is bounded by a factor depending on
A multiplied by the size of the stack up until this point, which is linear on the number of
symbols in w read so far. We conclude that w’ has size linear on w, from a data complexity

point of view. U

Together with Lemma 4.2, this yields:

Corollary 4.1. Let P be a deterministically profiled PDAnn. Then for every string w
the set [P](w) can be enumerated with output-linear delay after linear-time preprocessing

in data complexity.

4.5. Application: Document Spanners

We have presented our enumeration results for annotated grammars and pushdown
annotators. We conclude the chapter by applying them to the standard context of doc-

ument spanners (Fagin et al., 2015) and to the extraction grammars recently introduced

130

in (Peterfreund, 2023). We omit a formal introduction of extraction grammars as they

were defined in Section 3.7.

It can be noted that extraction grammars are like annotated grammars but with variable
operations that describe span endpoints (whereas our annotations are arbitrary), and that

are expressed as separate variable operation characters (not annotations of existing letters).

We can now formally define the equivalence between an extraction grammar and an
annotated grammar. To do so, we first explain how we can translate mappings to annota-

tions:

Definition 4.4 (Output associated to a mapping). Given a set X of variables, the corre-
sponding set of annotations Sy will be the powerset of Cx. Now, given a mapping 1 on a
document d and variables X to an annotation, we let T = |J,.{i,j | n(z) = [i,7)}
be the set of indices which appear in some span of 1. Further, for each k € I, let
S = {Fz| Fg.n(z) = [k, j)} U{d.| Fi.n(z) = [i,k)}. We now define the output
out(n) = (i1,S:,) ... (im, Si,,) where T = {iy,... i} and iy < -+ < i, namely, we
group the captures for each position as a set and use this set as the annotation. Note that
the largest index that appears in the annotation can be |d| + 1 because of the range of

spans.

Comparing both formalisms. Given an extraction grammar 7 on alphabet > and with
variables X', we say that it has an equivalent annotated grammar G if G is over the set
of annotations 2y and over the alphabet ¥ U {#} for # a fresh symbol, and if for every
document d € ¥* and every mapping 7 of d over X', we have ny € [H](d) iff out(n) €
[G](d - #). The #-symbol at the end is used because of the difference in the indexing of

spans (from 1 to |d| + 1) and annotations (from 1 to d).

We show that every extraction grammar has an equivalent annotation grammar in this

sense, and the translation further preserves unambiguity:

131

PROPOSITION 4.10. Given any extraction grammar H with k variables, we can build
an equivalent annotated grammar G in time O(9%% - |H|?). Moreover, if H is unambiguous

then so is G.

PROOF. Recall that, in the statement of this result, the formal notion of an equivalent
annotated grammar 1is the one defined above. Recall also the formal definition of ref-words

(see Section 2.2).

Let r be a ref-word in X U Cy and let w be an annotated string in ¥ U (3 X Qy).
We say that r and w are equivalent if plain(r - #) = str(w) and out(n”) = ann(w). For
example, the ref-word r; =+, aa ,, bbb, b is equivalent to w;, = (a,{F,}) a (b, {1s
Fy})bb (o, {H}) #.

The overall strategy of this proof is going to be to construct an annotated grammar G
in a way such that for every ref-word € L(H) there exists an equivalent annotated string

w € L(G), and vice versa. It is clear that this implies that G and ‘H are equivalent.

The way we build G will look like we are “pushing” the variable operations to the next

terminal to the right. We will do this process one variable operation at a time.

First, we need to define an intermediate model between those of extraction grammars
and annotated grammars. We define extraction grammars with annotations as a straight-
forward extension of extraction grammars which allow annotations on terminals that are
not variable operations. For the set of variables X, recall from Section 2.2 that we de-
fine the variable operations of X by Cy = {F,, 1, | z € X'}, and recall from Defini-
tion 4.4 that we define Qx = 2°*. An extraction grammar with annotations is a tuple
F = (V,3, X, P,S) where V is a finite set of nonterminal symbols, ¥ is an alphabet and
X is a set of variables, such that V', X3, 33 x Qy, and Cy are pairwise disjoint, P is a finite
set of rules of the form A — awith A € Vanda € (VUX U (X x Qy) UCy)*, and
S € V is the start symbol. As in the other models, the semantic of extraction grammars

is defined through derivations. Specifically, the set P defines the (left) derivation relation

132

=rC (VURUEXxQy)UCx)*x (VURU(XE xQy)UCx)* such that 4 AS = r uaf iff
te(BUEXxQ)UCy)", AeV,a,e(VUXU(XEXxQy)UCy)*,and A — a € P.
We denote by =7 the reflexive and transitive closure of = r. Then the language defined
by Fis L(F) ={w € (XU (2 x Qx)UCx)* | S =% w}. In addition, we assume that

no string w in L(F) has a variable operation as its last symbol.

An extraction grammar with annotations generates strings over X U (X x Qy) U Cy,
which we now refer to as annotated ref-words, and each annotated ref-word defines an
output. We will define the semantics of extraction grammars with annotations recursively
by using the semantics of annotated grammars as a starting point, that is, by extending the
function ann to receive strings over ¥ U (X X y) U Cy. In particular, for an annotated
ref-word 7 € (XU (X xQy))* the result of ann(r') stays the same. For a string 7 = urat €
(XU (X x Qx)UCy)* where k € Cy and a € X, we define ann(7) = ann(a(a, {x})?0),
and for a string 7 = Uk(a, 00 € (XU (X x Qy) U Cx)* where & € {y, we define
ann(r) = ann(u(a, U{k})0).

Further, we extend the function str to receive strings over ¥ U (X x Qy) U Cy as
str(7) = str(plain(r)). Therefore, for an extraction grammar with annotations F and a
string w € ¥* we define the function [F] as: [F[(w) := {ann(#) | 7 € L(F) Astr() =
w}. We maintain the notions of equivalency between annotated grammars, extraction
grammars, and extraction grammars with annotations. Likewise, we define equality be-
tween annotated strings, ref-words and annotated ref-words in the obvious way. Further,
we note that any extraction grammar H = (V, X, X', P, S) is equivalent to the extraction
grammar with annotations 7 = (V/, X U {#}, X, P',S") where V' = V U {5’} for some
S" ¢ V,and P = PU{S" — S#}. It is obvious that F is unambiguous if and only if H

1s unambiguous.

We proceed as follows. First we convert H into a functional extraction grammar. As
detailed in Peterfreund’s work (Peterfreund, 2023, Propositions 10 and 12), this takes run-
ning time O(3*|H|?), and if the initial grammar is unambiguous then so is the resulting

grammar. Note that this implies that every ref-word r which is derivable from S contains

133

each variable operation at most once. Hence we can build an equivalent extraction gram-
mar with annotations F = (V, X, X', P, .S) using the technique above. We then convert F
into a version of CNF which is slightly more restrictive than arity-two normal form: We
allow rules of the form X — Y7, X — ¢ and X — 7, for nonterminals X, Y and Z and
a terminal 7, but rules of the form X — Y are not permitted. Converting to this formalism
can be done in linear time in | F| while preserving unambiguity, e.g., by transforming rules
of the form X — Y to X — FEY for some fresh nonterminal £ with a rule £ — ¢, and
otherwise applying our result on arity-2 normal form (Proposition 4.1). We pick an order

over the variable operations in Cy and for each x € Cy we do the following:

Define a function proc,, that receives an annotated ref-word 7 € (LU (X x 264)UCy)*

and:

() if 7 € (U (X x 2°%) U (Cy \ {k}))*, then proc, (7) = 7,
(i) if # = axBad for some 4,9 € (XU (X x 2°%)U (Cx \ {k}))*, B € (Cx \ {k})*
and a € 3, then proc, (7) = urf(a,{k})0,
(iii) if 7 = urPB(a, T)0, with T C Cy \ {x}, then proc, (7) = urf(a, T U{k})v, and

(iv) proc, is undefined in any other case.

It is straightforward to see that the annotated ref-words 7 and = proc, (7) are equivalent

whenever proc, (7) is defined.

We build an extraction grammar with annotations 7/ = (V' X X, P’ S") where
V' = out U VEn U Meft U Vmid U V;ight U {S,}, and ‘/scr = {Ascr ’ A € P} for scr €
{out, in, left, mid, right}, and P’ is defined by the following rules:

e For each rule S — AB in P, we add the rules S’ — A°UtBout g/ 5 Ain gout
and S’ — A'sft Brieht (o P/,

e For each rule A — BC, we add the rules A%t — BoutCout Ain _, RinCrout
Ain _y powtgin Ain _y pleftcight qlefe _, pout(ileft gleft _, plefecmid qmid _
BridCmid Atight _, prightCout ang Aright _, gmid Cright o P,

134

e Foreachrule A — a, a € 3, we add A°"* — q and A"&" — (a, {k}).

e Foreachrule A — (a,T),a € Yand T C Cy \ {x}, we add A°"* — (a,T’) and
Arieht — (. T U {k}).

e Foreachrule A — #/, ' € Cx\{r}, we add the rules A°** — " and A™9 — x’.

e For each rule A — &, we add the rule A'*ft — ¢

e For each rule A — ¢, we add the rules A°"t — ¢ and A™94 — ¢.
Let 3, = XU (2 x 2°%) U Cy \ {x}. For each nonterminal A € V these hold:

L(A®) = {i | A =% 1, where) € 2%}
L(A™) = {proc, () | A =% b, where 1 = @xfad or i = kS (a, T)D,
4,0 €3, e (Cx\{r})aeX,TCCx\{x}}
L(A™*) = {0 | A =% wrpB, where b € 37, 8 € (Cx \ {r})"}
L(A"®") = {B(a, {x})i | A =7 Baib, where b € X%, 8 € (Cx \ {})"} U
{B(a, T U s} | A =% B(a, Ty, where @ € 57, 5 € (Ca \ {K})",T € Cx \ {x}}

L(A™) = {3 | A=7% B, where 3 € (Cx \ {v})"}

These equalities are given without proof since they are not used, and are just for illus-

trating the idea behind the proof.

For the rest of our proof we will represent derivations X =* ¢§ as the sequence of
productions X;| = v, Xy = 79,..., X;n = Ym, where X; = X and ~,, = §, which
uniquely determines the derivation by doing it in the leftmost way. We use this represen-
tation to state exactly how derivations in F are translated to derivations in F’ and vice

versa.

Another notion we need to address is how, in a given derivation X =* ¢, instances
of nonterminals are located with respect to each other. By an instance of a nonterminal
(or just instance), we mean an X; along with some specific derivation X; = -; in the

sequence. For some instances X; and X, we say that X is a descendant of X; if X; = X,

135

orif Y = X;Z,orY = ZX, for some Y which is a descendant of X;. We say that X
18 to the left of X; (or X; is fo the right of X;) if there is a derivation X = Y Z in the

sequence such that X; is a descendant of Y and X is a descendant of Z.

We note a few things in our construction: (1) Each X € V. only produces terminals
(which do not include) and nonterminals in V,; furthermore, every rule X — Y Z
in P is copied into P’ as X°'' — Yo°utZout (2) Nonterminals in Vj, do not produce
any terminals or ¢ directly, so they need to derive into some X € Vi, and some Y €
Viight to derive some string. (3) As with V5, each X € V4 only produces terminals in
Cx \ {x} and nonterminals in V4. (4) Each X € Vi (resp. Vjignt) produces exactly
one nonterminal X’ € Vieq (resp. Viight), or € (resp. (a, 1) for some a € ¥ and T C Cy
such that x € T)); this, as a consequence, means that on each derivation from F’ where
the first production is not S" = X°"'Y°" there is exactly one derivation X = ¢ such that

X € Vieg (resp., exactly one derivation X = (a,T’), such that X € Viighe).

From point (1) we see that each annotated ref-word 7 € L(F) such that 7 € i: (this s,
which does not mention « at all) can be derived by S’ starting by S’ = A°"*B°", §' = q,

S =corS =K.

On the other hand, each annotated ref-word 7 € L(F’) which does not have s on any
annotation set was necessarily derived through rules of the form X°'t — Y°utZeut which

correspond to the rule X — Y Z in P, so we deduce that 7+ € L(F).

We shall now prove that for any string 7 = ux a0, or 7 = uk(a,T)0, where 4,0 €

3%, 8€Cx\{k},a €T and T C Cy \ {x} such that # € L(F), it holds that proc(7) €

136

L(F"). W.lo.g., let 7 = urfav and consider some leftmost derivation of 7 from F:

S =% uAd
=r 1 BCH
=7 U gk CO
=7 UyUgk B fra010
=7 U UakBy Baati D = T,

where we have that 5 = (3,05, & = U1 and ¥ = 0;0,. Note that this is an arbitrary
derivation, and we are merely identifying these nonterminals A, B and C'. We also identify
the nonterminals D, which produces x, and £, which produces a. For the rest of the
current part of the proof, we only refer to the instances of these nonterminals. Using this,

we build a derivation from F’ step by step:

(i) We have S" =%, i, A"¢’, where ¢ is obtained by replacing each nontermi-
nal X in ¢ by X°'". We get this by starting with the derivation S =% u; A,
and replacing X =7 YZ by X" =7 Y"Z° if A is a descendant of Y, by
XN =z YoutZinif 7 is, or by X°Ut =z Y°utZ°U if none is. We also replace
each X =z 7,fort € ZU (X x 2°%)UCyx \ {k} U {c}, by X = 7. If
A =S, wereplace A itby 5.

(ii) We have the rule A™ — B'*ftCright which was added to P'.

(iii) We have B =%, ;. We get this by starting from B =% k[, and
we replace X =7 Y Z by X'*t =, YleftZmid if [is a descendant of D, by
Xleft — o, YyoutZleft if 7 is, by X = YUzt if X is to the left of D,
and by X™d =, ymidzZmid if it is to the right. We also replace X =>r T by
Xout = 7 if X is to the left of D, and by X™¢ = 7 if it is to the right.
Lastly, we replace D =7 x by D"t =7, ¢

(iv) We have C"&" =%, B,(a, {x})0;. We get this by starting from C' =% [Syady,
and we replace X = Y Z by X"eht — -, ymid zrieht jf B is descendant of Z,

or by X et = o, yright Zout iy jg by XMid = 5, y'mid Zmid if X s to the left of

137

E, and by X"eht = -, yriht 7right if it s to the right. We also replace X =7 7
by X™Md =z, 7if X is to the left of £, and by X°* = 7 if it is to the right.
Lastly, we replace E = a by E"8" =1 (a, {k}).

(v) We have ¢’ =%, 0o, which we obtain from § =% 7, by replacing each X =
Y Z by X =z YoutZout ‘and each X = 7 by X" =z 7.

In the end, we get the following leftmost derivation from F”:
S =%, 1, A™ (or 4,.5'9)
= 1 @y B gty
=% Gy 3 CTEM
=%, Uyl Pa(a, {K})016
=% t1tzf1Ba(a, {K}) 0102 = proc, (7),
which proves that proc(7) € L(F").

We will prove that for every s = @(a,T)0 € L(F') where x € T there is 7 such that
proc,.(7) = § in a similar way. We argue that any leftmost derivation that produces $ has
the following form:

S =%, 4, A6, (or 1,5'61)
=5 1 B CTEM,
=%, Uyl D", CTEM
=5 U1 U6,C"8" 5,
=% Uyl B CTEM6,
=7 U1 to 1 2(a, T) 0101

=7 Uy g B Ba(a, T) 010y = 3,

where § € V*

out?

§ € VEgs B, B2 € (Cx \ {k})*, & = G179 and O = 010,. The reasoning

goes as follows:

138

e We know that S’ =%, uf(a,T)0 € L(F'). If X =z (a,T) and k € T, then
X € Viight.

e From the way F' was built, there must be a production X = Y Z in S’ =%, §
such that X € Vi, (or X = 5"), Y € Vieg and Z € Vg, as it is the only way to
derive a nonterminal in Vyigne. Let A™ (or S’), B'*" and C"&" be these X, Y and
Z respectively.

e Seeing the rules in P’ we note that every string of terminals that is derivable
from B'* is of the form 3, where @ € 3, and § € (C \ {x})*. Furthermore,
this string satisfies that there is a production X =7 ¢ for some X € Vi such
that this ¢ is exactly at the left of where /3 begins. Let i, be this 0, let D't be
this X, and let (3; be this .

e Likewise, we note that C"&" always derives a string of terminals of the form
B(a’, T for some § € (Cx \ {x})* and 0 € . Let /3, be this 3 and let 0
be this w.

e Lastly, let S’ =%, @1 A"d; (or 4;.5'01) be the one that derives 5. From the rules

in P’, we note that d; is composed solely of nonterminals in V.

An important point that can be seen from this reasoning is that for each instance X #
S’ that appears in the derivation S =%, 3, we can deduce the set V., for which X € V.,
among the options scr € {out, in, left, mid, right}, by seeing its position in the derivation.
To be precise, this is given from how X relates to the instances D'*"* = ¢, and to E"g"t =
(a,T), for the nonterminal E"&" € V., that satisfies this. (1) If X is to the left of D',
then X € V., (2)if D'® is a descendant of X, but £78" is not, then X € Vieq, (3) if X is
to the right of D', and is to the left of £"8" then X € Vi.iq, (4) if £"8" is a descendant
of X, but D'"*" is not, then X € X,ign, (5) if X is to the right of E"8", then X € V,
and (6) if both D'*f and E"&"t are descendants of X, then X € V;,. We bring attention to
the fact that in this paragraph we referred only to the instances of D'* and E"&" on the

derivations mentioned above.

139

Another, more important point, is this reasoning gives us the derivation presented
above. This derivation is translated into the following derivation in F:
S :i;: fblA(Si (OI' ﬂls(ﬁ)
=r 1 BC(;;
=>r 1)1122/155051
:>i;_— 1)1122/1&053
=>r ﬂlﬁgnﬁlﬁg(a, T \ {K})@l(gi, or
111@2%5152@1517
:>i;_— ﬂlﬁgﬁlﬁlﬁg<a, T \ {Iﬂ?})@lﬁz = ’f’A, or
Uy Ugk B fraty Vg = T,
Where §/ and &}, are obtained by replacing each X™¢ by X in §; and &,, respectively. It is
direct to see that this is a valid derivation since for every production X* = YYZ? there
exists a valid production X =7 Y Z, for any x,y,z € {in, out, left, mid, right}. Further-
more, for the production D" =z ¢ there exists D =» &, and for C"&" =1, (a,T)

there exists C' =5 (a,T \ {k}) if T' # {k}, and C = a if T' = {k}. Further, note that

proc, (1) = 5. We conclude that 7 € L(F) for some 7 such that proc, (7)) = 5.

From the arguments above, we obtain that for each annotated ref-word 7 € L(F)
there exists an equivalent annotated ref-word ¢ € L(F), given by ¢ = proc, (#). Further-
more, we showed that for each annotated ref-word ¢ € L(F") there exists an equivalent

7 € L(F). This implies that 7 and F’ are equivalent.

Now, assume that F is unambiguous. We will prove that F” is unambiguous as well.

Consider an annotated ref-word £ € L(F’) and consider two sequences S; and S, which

140

define the derivation S" =%, t. We showed above how to translate these sequences into
sequences S; and S, which define the derivation S =% 7, for some 7 such that { =
proc, (7). Since F is unambiguous, these sequences are equal. Assume now that S; and
S, are not equal, but since their translations into F are the same, then it must be that for
some production X =r Y Z or X = x 7, there must be two productions X** =z YY1 7%
and X =z YY2/7%2 or X =z 7 and X = 7 at the same position, for some
(x1,Y¥1,21) # (X2,Y¥2,22). We note that this is not possible since we argued that for a given
derivation S” =%, 7, the set in which each nonterminal instance belongs, among Vo, Vin,
Vieft> Vimids Viight. is fixed by its relation to certain instances of D'*"t and E"&". We conclude

that 7’ is unambiguous.

Assume F’ is unambiguous. We will prove that F is unambiguous as well. Like-
wise, consider an annotated ref-word # € L(F), and consider two sequences S; and S,
which define the derivation S =% f. We showed above how to convert these sequences
into S] and S} which define the derivation S’ =%, proc, (7). Since F’ is unambiguous,
then it must hold that S] = S). Note that the translation we showed consisted in replac-
ing productions of the form X =7 YZ by X* =5 YYZ% X =7 k by X'*ft =, ¢,
X =5 aby X"&" = (a,{k}) (or X =z (a,T) by X"&" =5, (a,T U {k})) for
a single fixed production, and X = 7 by X* =% 7 in any other case, for some
x,y,z € {out,in, left, mid, right}. Therefore, the sequence S; from which S] was ob-
tained is uniquely defined, from which we deduce that S; = S5, and we conclude that F

is unambiguous.

At the end of the procedure, we obtain an extraction grammar with annotations F' =
(V1,3, X, Pt, ST) such that there are no rules of the form X — « in P', for any x € Cy.
From this, we obtain the annotated grammar G = (V1,3 Qy, PT, ST) which is equivalent

to H. Furthermore, G is unambiguous if and only if 7 is unambiguous.

With respect to the running time of building G, note that in each iteration of the al-

gorithm, by starting on an extraction grammar with annotations F with a set of rules P,

141

the resulting 7' has a set of rules P’ with a size of 9|P|. Since this step is repeated

twice for each variable € X (once for each variable operation), the total running time is

O (32[1) = OO, 0

Hence, our formalism of annotated grammars captures that of extraction grammars.
Unfortunately, the translation is exponential, intuitively because €2 must cover all possible
sets of variable operations. We note that, in exchange for this, annotated grammars are
strictly more expressive: each output can annotate an arbitrary number of positions in the
string (e.g., every other character), unlike extraction grammars whose mappings have a

fixed number of variables.

We complete Proposition 4.10 to give more intuition about the conciseness of extrac-

tion grammars vs annotated grammars, and the difference in expressiveness.

We first give a simple example to show that, with our notion of equivalence, we may
indeed need an exponential number of symbols in the annotation set, implying that extrac-

tion grammars are in some cases exponentially more concise:

Example 4.1. Consider the following functional extraction grammar H with n vari-

ables x1, . .., x, and alphabet {a}:

H . A]_ % l_gjl_|x1 A2 | l_asl A2 _{xl
AQ — |_$2_|x2 Ag | l_:m Ag _|$2

A, = bp e a | Fa, as,

For the document a, this extraction grammar will output all possible combinations de-
pending on whether =, is at the beginning or end of a for each i < n. Thus, an equivalent
annotated grammar will need to consider all possible subsets of {-, | © € X'} as possible

annotations of the character a, which will require an exponential number of rules.

142

We then illustrate why annotated grammars are in fact strictly more expressive: in
addition to capturing all extraction grammars (Proposition 4.10), annotated grammars can

express functions that do not correspond to an annotation grammar.

Example 4.2. Consider a singleton annotation set) = {53, a singleton alphabet 3> =
{a}, and the annotated grammar with start symbol S and production S — a(a,®)S|ale.
For each string of X%, it produces one output where every other character is annotated.
This cannot be expressed by an extraction grammar, as such a grammar fixes a finite set X
of variables independently from the input document, and each variable is mapped to only

one span.

Enumeration for extraction grammars. As extraction grammars can be rewritten to
annotated grammars in an unambiguity-preserving way (Proposition 4.10), we can derive
from Theorem 4.2 an enumeration result for unambiguous extraction grammars with cubic

preprocessing time in data complexity.

Theorem 4.6. Given an unambiguous extraction grammar H with k variables and a

string s, we can enumerate the mappings of [H](s) with preprocessing time O(9%¢ - |H|? -

|s|?) (hence, cubic in |s|), and with output-linear delay (independent from s, k, or H).

In data complexity, this improves over the result of (Peterfreund, 2023) for unambigu-
ous extraction grammars, whose preprocessing time is O(9%* - |H|? - |s|®), i.e., our data
complexity is cubic instead of quintic. We leave to future work a study of enumeration

results for restricted classes of extraction grammars via Theorems 4.2 and 4.4.

4.6. Related Work

We have explained how our work is set in the context of document spanners (Fagin et
al., 2015), and in particular of enumeration results for regular spanners (Florenzano et al.,
2018; Amarilli et al., 2019c). A recent survey of much of this literature can be found in

Peterfreund’s PhD thesis (Peterfeund, 2019). The most related work to ours is the more

143

recent introduction of extraction grammars by Peterfreund (Peterfreund, 2023), which we

already discussed.

There are also some other extensions of regular spanners that are reminiscent of CFGs,
e.g., core spanners (featuring equality) or generalized core spanners (with difference) al-
ready introduced in (Fagin et al., 2015), or Datalog evaluated over regular spanners as
in (Peterfreund, ten Cate, Fagin, & Kimelfeld, 2019). However, to our knowledge, there

are no known constant-delay enumeration algorithms in these contexts.

Our study of enumeration for annotated grammars is also reminiscent of enumera-
tion results for queries over trees expressed as tree automata. An algorithm for this was
given by Bagan (Bagan, 2006b) with linear-time preprocessing and constant-delay in data
complexity, for deterministic tree automata, and this was extended in (Amarilli, Bourhis,
Mengel, & Niewerth, 2019d) to nondeterministic automata. However, this is again more
restricted: evaluating a tree automaton on a tree amounts to evaluating a visibly pushdown
automaton over a string representation of the tree, which is again more restrictive than

general context-free grammars.

144

S. ENUMERATION ON SLP-COMPRESSED DOCUMENTS

In this chapter, we study the problem of enumerating results from a query over a com-
pressed document. The model we use for compression are straight-line programs (SLPs),
which are defined by a context-free grammar that produces a single string. For our queries,
we use a model called Annotated Automata, an extension of regular automata that allows
annotations on letters. This model extends the notion of regular spanners as it allows

arbitrarily long outputs.

The main result in this chapter is an algorithm that evaluates such a query by enumer-
ating all results with output-linear delay after a preprocessing phase which takes linear
time on the size of the SLP, and cubic time over the size of the automaton. We achieve this
through a persistent data structure named Enumerable Compact Sets with Shifts which
guarantees output-linear delay under certain restrictions. These results imply constant-

delay enumeration algorithms in the context of regular spanners.

Further, we use an extension of annotated automata which utilizes succinctly encoded
annotations to save an exponential factor from previous results that dealt with constant-
delay enumeration over variable-set automata. Lastly, we extend our results to allow com-

plex document editing while maintaining the constant delay guarantee.

Outline of the chapter. In Section 5.1 we introduce the setting and its corresponding
enumeration problem. In Section 5.2, we present our data structure for storing and enu-
merating the outputs, and in Section 5.3 we show the evaluation algorithm. Section 5.4
offers the application of the algorithmic results to document spanners, plus an extension
for compressed annotation schemes, and Section 5.5 shows how to extend these results to

deal with complex document editing.

145

5.1. Setting and main problem of the chapter

In this section, we present the setting and state the main result of the chapter. First,
we define straight-line programs, which we will use for the compressed representation of
input documents. Then we introduce the definition of annotated automaton, an extension
of regular automata to produce outputs. We use annotated automata as our computational
model to represent queries over documents. By combining both formalisms, we state the

main enumeration problem and the main technical result.

SLP-compression. Recall that a context-free grammar is a tuple G = (N, %, R, Sp),
where N is a non-empty set of non-terminals, X is finite alphabet, S, € N is the start
symbol and R C N x (N U X)T is the set of rules. As a convention, the rule (A, w) €
R will be written as A — w, and we will call > and N the set of terminal and non-
terminal symbols, respectively. A context-free grammar S = (N, X, R, Sy) is a straight-
line program (SLP) if R is a total function from N to (N U X)* and the directed graph
(N,{(A,B) | (A,w) € R and B appears in w}) is acyclic. For every A € N, let R(A) be
the unique w € (N U X)) such that (A, w) € R, and for every a € ¥ let R(a) = a. We
extend R to a morphism R* : (N U X)* — ¥* recursively such that R*(d) = d when d is
a document, and R*(c; ... a,) = R*(R(av) - ... R(av,)), where a; € (N UX) for every
i < n. By our definition of SLP, R*(A) is in ¥, and uniquely defined for each A € N.
Then we define the document encoded by S as doc(S) = R*(S)).

Example 5.1. Ler S = (N, X, R, Sy) be an SLP with N = {Sy, A, B}, ¥ = {a,b, r},
and R = {Sy — ArBABA,A — ba,B — Ara}. We then have that doc(A) = ba,
doc(B) = bara and doc(S) = doc(Sy) = barbarababaraba, namely, the string repre-
sented by S.

We define the size of an SLP S = (N, X, R, Sy) as |S| = > 4o [R(A)|, namely, the
sum of the lengths of the right-hand sides of all rules. It is important to note that an SLP
S can encode a document doc(.S) such that | doc(S)| is exponentially larger with respect

to |S|. For this reason, SLPs stay as a commonly used data compression scheme (Storer

146

& Szymanski, 1982; Kieffer & Yang, 2000; Rytter, 2002; Claude & Navarro, 2011), and
they are often studied particularly because of their algorithmic properties; see (Lohrey,
2012) for a survey. In this chapter, we consider SLP compression to represent documents
and use the formalism of annotated automata for extracting relevant information from the

document.

Annotated automata. An annotated automaton (AnnA for short) is a finite state au-
tomaton where we label some transitions with annotations. Formally, it is a tuple A =
(@Q,%,Q,A I, F) where @ is a state set, . is an input alphabet, 2 is an output alphabet,

I C Qand F' C (@ are the initial and final set of states, respectively, and

A C QxXxQ UQX(EXQ)XQ

read transitions read-annotate transitions

is the transition relation, which contains read transitions of the form (p, a,q) € Q@ X X X Q,

and read-annotate transitions of the form (p, (a,5),q) € Q x (X x Q) x Q.

Similarly to transducers (Berstel, 2013), a symbol a € ¥ is an input symbol that the
machine reads and & € 2 is an output symbol that indicates what the machine prints in
an output tape. A run p of A over a document d = a;as . ..a, € X* is a sequence of the
form:

. b1 b2 bn+1
P = aq —q ... — 7 (qnt1

such that ¢; € [and, foreachi € {1,...,n}, itholds that either b; = a; and (¢;, a;, gi+1) €
A, orb; = (a;, 8 and (¢;, (a;,), ¢iv1) € A. We say that p is accepting if ¢, 1 € F.

We define the annotation of p as ann(p) = ann(b;)-...-ann(b,) such that ann(b;) =
(057) if b; = (a,®), and ann(b;) = ¢ otherwise, for each ¢« € {1,...,n}. Given an
annotated automaton A and a document d € ¥*, we define the set [.A](d) of all outputs of

A over d as:

[A](d) = {ann(p) | pis an accepting run of A over d}.

147

a,b,r a,r a, r a,b,r

_(a (b, 0) % (b, o) }q:}\ (b, o) >@

2 \Z

Figure 5.1. Example of an annotated automaton.

Note that each output in [A](d) is a sequence of the form (sy,77) ... (4, 4x) for some
k < n where iy < ... < i, and each (Bj, i;) means that position ¢; is annotated with the

symbol &;.

Example 5.2. Consider an AnnA A = (Q,2,Q, A I, F) where I = {q;} Q =
{q1,92, 43,94}, X = {a,b,r}, Q = {0}, and F = {q,}. We define A as the set of tran-
sitions that are depicted in Figure 5.1. For the document d = barbarababaraba the set
[A](d) contains the strings (o,1)(o,4)(c,8), (o, 4)(0,8)(0,10) and (o, 8)(c, 10)(o, 14).

Intuitively, A selects triples of b which are separated by characters other than b.

Annotated automata are the natural regular counterpart of annotated grammars in-
troduced in Chapter 4. Moreover, it is the generalization and simplification of similar
automaton formalisms introduced in the context of information extraction (Fagin et al.,
2015; Peterfreund, 2023), complex event processing (Grez, Riveros, Ugarte, & Vansum-
meren, 2021; Grez & Riveros, 2020), and enumeration in general (Bourhis, Grez, Jachiet,
& Riveros, 2021). In Section 5.4, we show how we can reduce the automaton model of
document spanners, called a variable-set automaton, into a (succinctly) annotated automa-

ton, generalizing the setting in (Schmid & Schweikardt, 2021).

Similar to other automata models, the notion of an unambiguous automaton will be
crucial for us to remove duplicate runs for the same output. Specifically, we say that an
AnmnA A = (Q,%,Q,A, 1, F) is unambiguous if for every d € ¥* and every w € [A](d)
there is exactly one accepting run p of A over d such that w = ann(p). On the other
hand, we say that A is deterministic if A is a partial function of the form A : (Q x X U

Q x (X x Q)) = Q. Note that every deterministic AnnA is always unambiguous. The

148

definition of unambiguous is in line with the notion of unambiguous annotated grammar
(see Chapter 4, similar notions are also present in Chapter 3), and determinism with the
idea of I/0O-determinism used in (Florenzano et al., 2020; Bourhis et al., 2021; Grez et al.,
2021). As usual, one can easily show that for every AnnA A there exists an equivalent
deterministic AnnA (of exponential size) and, therefore, an equivalent unambiguous AnnA
(see (Florenzano et al., 2020; Bourhis et al., 2021; Grez et al., 2021) for a proof of this

result).

Lemma 5.1. For every annotated automaton A there exists a deterministic annotated

automaton A’ such that [A](d) = [A’](d) for every d € ¥*.

Regarding the expressive power of annotated automata, we note that they have the
same expressive power as MSO formulas with monadic second-order free variables. We
refer the reader to Chapter 3 for an analogous result in the context of nested documents. In
fact, the equivalence between these models can be obtained as a corollary of Proposition 1
in Chapter 3. Finally, by Lemma 5.1 we do not loose expressive power if we restrict to the
class unambiguous annotated automata, since we can convert every annotated automata

into an deterministic one with an exponential cost in the size of the initial automaton.

Main result. We are interested in the problem of evaluating annotated automata over an
SLP-compressed document, namely, to enumerate all the annotations over the document
represented by an SLP. Formally, we define the main evaluation problem of this chapter as

follows. Let C be any class of AnnA (e.g., unambiguous AnnA).

Problem: SLPENUM|C|
Input: An AnnA A € C and an SLP S
Output: Enumerate [A](doc(S5))

As established, we assume here the computational model of Random Access Ma-
chines (RAM) with uniform cost measure and addition and subtraction as basic opera-

tions. Further, as it is commonly done on algorithms over SLPs and other compression

149

schemes, we assume that the registers in the underlying RAM-model allow for constant-

time arithmetical operations over positions in the uncompressed document (i.e., they have

O(log | doc(S)]) size).

The notion of output-linear delay is a refinement of the better-known constant-delay
bound, which requires that each output has a constant size (i.e., with respect to the input).
Since even the document encoded by an SLP can be of exponential length, it is more

reasonable in our setting to use the output-linear delay guarantee.

The following is the main technical result of this chapter.

Theorem 5.1. Let C be the class of all unambiguous AnnAs. Then one can solve the
problem SLPENUM|C| with linear preprocessing time and output-linear delay. Specif-
ically, there exists an enumeration algorithm that runs in |A|*> x |S|-preprocessing time
and output-linear delay for enumerating [.A](doc(S)) given an unambiguous AnnA A and
an SLP S.

We dedicate the rest of the chapter on presenting the enumeration algorithm of The-
orem 5.1. In Section 5.3 we explain the preprocessing phase of the algorithm. Before
that, in the following section, we explain how Enumerable Compact Sets with Shifts work,

which is the data structure that we use to store the outputs during the preprocessing phase.

5.2. Enumerable compact sets with shifts

In this section, we present the data structure, called Enumerable Compact Sets with
Shifts, that will be used to compactly store the outputs of evaluating an annotated automa-
ton over a straight-line program. This structure extends Enumerable Compact Sets (ECS)
introduced in Chapter 3 (which were, in turn, strongly inspired by the work in (Amarilli et
al., 2017, 2019a)). Indeed, people have also used ECS extensions in (Bucchi, Grez, Quin-
tana, Riveros, & Vansummeren, 2022). This new version extends ECS by introducing a

shift operator, which allows to succinctly move all outputs’ positions with a single call.

150

Although the shift nodes require a revision of the complete ECS model, it simplifies the
evaluation algorithm in Section 5.3 and achieves output-linear delay for enumerating all
the outputs. For completeness of presentation, this section goes through all main details

of ECS, as it was done in Chapter 3, and how to modify them with shifts.

The structure. Let €2 be an output alphabet such that €2 has no elements in common with
Zor{U,o} (ie., QNZ =0 and QN {U,®} = 0). We define an Enumerable Compact
Set with Shifts (Shift-ECS) as a tuple:

D = (V. lr N\

such that V' is a finite sets of nodes, /: V' — V and r: V — V are the left and right partial
functions, and \: V' — QU Z U {U, ®} is a labeling function. We assume that D forms
an acyclic graph, namely, the induced graph (V. {(v, £(v)), (v,r(v)) | v € V'}) is acyclic.
Further, for every node v € V, £(v) is defined iff A\(v) € Z U {U, ®}, and r(v) is defined
iff \(v) € {U, ®}. Notice that, by definition, nodes labeled by (2 are bottom nodes in the
acyclic structure formed by D, and nodes labeled by Z or {U, ®} are inner nodes. Here,
Z-nodes are unary operators (i.e., 7(-) is not defined over them), and U-nodes or ®-nodes
are binary operators. Indeed, we say that v € V' is a bottom node if A\(v) € €, a product
node if A\(v) = ®, a union node if A\(v) = U, and a shift node if \(v) € Z. Finally, we
define the size of D as |D| = |V].

The outputs retrieved from a Shift-ECS are strings of the form (54, i1)(6y, 42) . . . (8, i¢),
where 5; € (2 and i; € Z. To build them, we use the shifting function sh : (2 X Z) X Z —
(Q x Z) such that sh((s5),s) = (557 + s). We extend this function to strings over 2 x Z
such that sh((o,41) ... (89,70),8) = (61,41 + 8) ... (0,7 + s) and to set of strings such
that sh(L, s) = {sh(w, s) | w € L} forevery L C (2 x Z)*.

Each node v € V of a Shift-ECS D = (Q,V, ¢, r, \) defines a set of output strings.
Specifically, we associate a set of strings [D](v) recursively as follows. For any two sets

of strings L; and Lo, define Ly - Ly = {w; - we | w1 € Ly and wy € Ly}. Then:

151

Figure 5.2. An example of a Shift-ECS with output alphabet {x,y}. We
use dashed and solid edges for the left and right partial functions, respec-
tively.

o if \(v) = 6-€ , then [D](v) = {(551)};

o if A(v) = U, then [D](v) = [D](£(v)) U [D](r(v));
o if A(v) = ©, then [D](v) = [D](¢(v)) - [P](r(v)); and
if A\(v) € Z, then [D](v) = sh([D](¢(v)), A(v)).

(Y

Example 5.3. Suppose Q2 = {z,y}. Consider the Shift-ECS D = (2, V, {,r, \) where
V = {1, 02,03, 04,05}, L(v1) = vy, 7(v1) = vy, L(vg) = v3, L(v3) = vy, 7(v3) = vs,
Av1) = ©, A(va) = 42, Mvg) = U, AMvs) = = and A(vs) = y. We show an illustration of
this Shift-ECS in Figure 5.2. One can easily check that the sets of words [D] associated

to each node are:

[Pl(va) = {(, 1)}

[Pl(vs) = {(y, D}

[Pl(vs) = {(,1),(y, 1)}

[Pl(v2) = {(2,3),(y,3)}

[Pl(v1) = {(z,1)(x,3), (z,1)(y,3)}-

The enumeration algorithm. Given that every node of a Shift-ECS represents a set of
strings, we are interested in enumerating them with output-linear delay. Specifically, we

focus on the following problem. Let C be a class of Enumerable Compact Sets with Shifts.

152

Problem: SHIFTECSENUM|C]
Input: a Shift-ECS D € C and a node v of D
Output: Enumerate [D](v).

The plan then is to provide an enumeration algorithm with output-linear delay for
SHIFTECSENUM|C] and some helpful class C. A reasonable strategy to enumerate the set
[D](v) is to do a traversal on the structure while accumulating the shift values in the path
to each leaf. However, to be able to do this without repetitions and output-linear delay, we
need to guarantee two conditions: first, that one can obtain every output from D in only
one way and, second, union and shift nodes are close to an output node (i.e., a bottom
node or a product node), in the sense that we can always reach them in a bounded number

of steps. To ensure that these conditions hold, we impose two restrictions on an ECS.

(i) We say that D is duplicate-free if D satisfies the following two properties: (1)
for every union node v it holds that [D](¢(v)) and [D](r(v)) are disjoint, and
(2) for every product node v and for every w € [D](v), there exists a unique
way to decompose w = wy - wy such that wy € [D](¢(v)) and wy € [D](r(v)).

(ii)) We define the notion of k-bounded Shift-ECS as follows. Given a Shift-ECS
D, define the (left) output-depth of a node v € V, denoted by odepth,(v),
recursively as follows: odepth,(v) = 0 whenever A\(v) € Q or A(v) = ®, and
odepthp(v) = odepth(¢(v)) + 1 whenever A(v) € {U} U Z. Then, for k € N
we say that D is k-bounded if odepth,(v) < k forallv € V.

PROPOSITION 5.1. Fix k € N. Let Cy. be the class of all duplicate-free and k-bounded
Shift-ECSs. Then one can solve the problem SHIFTECSENUM|Cy] with output-linear de-

lay and without preprocessing (i.e. constant preprocessing time).

PROOF. Let D = (Q,V,¢,r, \) be a duplicate-free and k-bounded Shift-ECS. The

algorithm that we present is a depth-first traversal of the DAG, done in a recursive fashion

153

Algorithm 4 Enumeration over a node u from some ECS D = (2, V, £, r, \).

1
2
3
4
5:
6
7
8
9

: procedure ENUMERATE(v)

T < CREATE(v)

while 7 .NEXT = true do
7 .PRINT(0)

: > Bottom node iterator 7,

: procedure CREATE(v) > Sup. A\(v) € Q
U+ v

hasnext < true

10:

11:
12:
13:
14:
15:

procedure NEXT
if hasnext = true then
hasnext < false
return true
return false

16:

17:
18:

procedure PRINT(S)
print : (A(u),1 + s)

19:

20:
21:
22:
23:
24
25:

> Product node iterator 7
procedure CREATE(v) > Sup. A\(v) = ®
Uv
Ty — CREATE({(u))
T¢.NEXT
T, <— CREATE(r(u))

26:

27:
28:
29:
30:
31:
32:

33:

procedure NEXT
if 7..NEXT = false then
if 7,.NEXT = false then
return false
T, <— CREATE(r(u))
T, .NEXT
return true

34.

35:
36:
37:

procedure PRINT(S)
T¢.PRINT(S)
7,.PRINT(S)

38
39

40:
41:
42:
43:

: > Union/Z node iterator 7,7,
: procedure CREATE(v)
> Sup. A(v) € {U}UZ
St < push(St, (v,0))
St <~ TRAVERSE(St)
T <— CREATE(top(St).u)

44.

45

46:
47:
48:
49:
50:
51:
52:

53:
54
55:

: procedure NEXT
if 7 NEXT = false then
St <— pop(St)
if length(St) = 0 then
return false
(u, s) < top(St)
if A\(u) € {U} UZ then
St <— TRAVERSE(St)
T < CREATE(u)
T .NEXT
return true

56:

57

58:
59:

: procedure PRINT(S)
(u,s") < top(St)
T .PRINT(s + §')

60:

61

62:
63:
64:
65:
66:
67:
68:
69:
70:
71:

72:

: procedure TRAVERSE(St)
while A\(top(St).u) € {U} UZ do
(u,s) < top(St)
St < pop(St)
if \(u) € Z then
v < L(u)
s s+ Au)
St < push(St, (v, ¢'))
else
St < push(St, (r(u), s))
St < push(St, (£(u), s))

return St

to ensure that after retrieving some output w, the next one w’ can be printed in O(k - (Jw|+

|w'|)) time. The entire procedure is detailed in Algorithm 4.

154

To simplify the presentation of the algorithm, we use an iterator interface that, given a
node v, it contains all information and methods to enumerate the outputs [D](v). Specifi-

cally, an iterator 7 must implement the following three methods:

CREATE(v) = T T .NEXT — b T .PRINT(s) — ()

where v is a node, b is either true or false, and () means that the method does not return an
output. The first method, CREATE, receives a node v and creates an iterator 7 of the type of
v. We will implement three types of iterators, one for bottom nodes (7(), one for product
nodes (7¢), and one for union and Z-nodes together (/7). The second method, 7 .NEXT,
moves the iterator to the next output, returning true if, and only if, there is an output to
print. Then the last method, 7 .PRINT, receives an integer value s, and writes the current
output pointed by 7 to the output registers after shifting the output by s. We assume
that, after creating an iterator 7, one must first call 7 .NEXT to move to the first output
before printing. Furthermore, if 7 .NEXT outputs false, then the behavior of 7 .PRINT is
undefined. Note that one can call 7 .PRINT several times, without calling 7 .NEXT, and the

iterator will write the same output each time in the output registers.

Assume we can implement the iterator interface for each type. Then the procedure
ENUMERATE(v) in Algorithm 4 (lines 1-4) shows how to enumerate the set [D](v) by
using an iterator 7 for v. In the following, we show how to implement the iterator interface

for each type and how the size of the next output bounds the delay between two outcomes.

We start by presenting the iterator 7 for a bottom node v (lines 6-18), called a bot-
tom node iterator. We assume that each 7 has internally two values, denoted by u and
hasnext, where u is a reference to v and hasnext is a boolean variable. The purpose of
a bottom node iterator is only to print (A(u), 1 + s) for some shift s. For this goal, when
we create Tq, we initialize u equal to v and hasnext = true (lines 8-9). Then, when we
call 7 .NEXT for the first time, we swap hasnext from true to false and output true (i.e.,
there is one output ready to be returned). Then any following call to 7 .NEXT will be false

(lines 11-15). Finally, the 7¢ .PRINT writes the pair (A(u),1 + s) to the output registers

155

(lines 17-18). Here, we assume the existence of a method print on the RAM model for

writing the next entry to the output registers.

For a product node, we present a product node iterator 7 in Algorithm 4 (lines 20-
37). This iterator receives a product node v with A(v) = © and stores a reference of v,
called u, and two iterators 7, and 7,., for iterating through the left and right nodes ¢(u)
and r(u), respectively. The CREATE method initializes v with v, creates the iterators 7,
and 7,., and calls 7,.NEXT to be prepared for the first call of 7, .NEXT (lines 21-25). The
purpose of 7, .NEXT is to fix one output for the left node ¢(u) and iterate over all outputs
of r(u) (lines 27-33). When we stop enumerating all outputs of [D](r(u)), we move to
the next output of 74, and iterate again over all [D](r(u)) (lines 29-32). For printing, we

recursively call first the printing method of 7, and then the one of 7, (lines 35-37).

The most involved case is the union/Z node iterator 77 (lines 38-72). This iterator
receives a node v of one of two types, either a union node, or a Z-node. It keeps a stack St
and an iterator 7. The elements in the stack are pairs (u, s) where u is a node and s is an
integer. We assume the standard implementation of a stack with the native methods push,
pop, top, and length: the first three define the standard operations over stacks, and length
counts the elements in a stack. The purpose of the stack is to perform a depth-first-search
traversal of all union and Z nodes below v, reaching all possible output nodes u such that
there is a path of only union and Z nodes between v and u. At every point, if an element
(u, s) is in the stack, then s is equal to the sum of all Z nodes in the path from v to u. If
the top node of St is a pair (u, s) such that u is an output node, then 7 is an iterator for v,
which enumerates all their outputs. If p = (u, s), we will use the notation p.u to refer to

u.

In order to perform the depth-first-search traversal of union and Z nodes, we use the
auxiliary method TRAVERSE(St) (lines 61-72). While the node v at the top of St is a union
or a shift node, we pop the top pair (u, s) from St. If u is a shift node (lines 65-68), we
push the pair (v, ') in the stack where v is the node ¢(u) pointed by w and s’ is the sum of

the current shift s with the shift A(u). Otherwise, if « is a union node (lines 69-71), we first

156

->v: U v:U v:U v U
1 Y\ 2 Y Ny 3 PN 4 7 Ny
U Qe U . ae U Qg U Qg
/s 43— T | T |
ay \ ay <~y ay \ | ay \ |
U U @) l U |
Y\ v\ Y N\ov PN
U as U as U . as U as
/ \+2 / \+2 / -2 <«--" / _|_2 i\\
as 1 as 1 A9 <~ 1 as { \
U U U U \\
N\ <N\ 7N\ N o
a3 a4 as Qy as a4 a3 «---- ay
St . (U70) (a170)(+370)(a670) (a273)(+273)(a573)(a670) (a375)(a475)(a573)(a670)

Figure 5.3. Evolution of the stack St (written on the bottom and repre-
sented by dashed arrows) for an iterator over the node v in the figure. The
underlying ECS is made of union nodes, two Z nodes, and six bottom
nodes. The first figure is St after calling St < push(St, (v,0)), the sec-
ond is after calling St «+— TRAVERSE(St). The last two figures represent
successive calls to pop(St), St <~ TRAVERSE(St).

push the right pair (r(u), s) followed by the left pair (¢(u), s) into the stack. The while-
loop will eventually reach an output node at the top of the stack and end. It is important
to note that TRAVERSE(St) takes O(k) steps, given that the ECS is k-bounded. Then if
k is fixed, the TRAVERSE procedure takes constant time. In Figure 5.3, we illustrate the
evolution of a stack St inside a union node iterator when we call TRAVERSE(St) several

times.

The methods of a union/Z node iterator 7,7 are then straightforward. For CREATE
(lines 39-43), we push (v,0) and then traverse St, finding the first leftmost output node
from v (lines 41-42). Then we build the iterator 7 of this output node for being ready
to start enumerating their outputs (line 43). For NEXT, we consume all outputs by calling
7 .NEXT (line 46). When there are no more outputs, we pop the top node from St and check
if the stack is empty or not (lines 47-48). If this is the case, there are no more outputs and
we output false. Otherwise, if St is non-empty but the top pair (u, s) of St contains a

union node, then we apply the TRAVERSE method for finding the leftmost output node

157

from u (lines 50-52). When the procedure is done, we know that the node in the top pair
is an output node, and then we create an iterator and move to its first output (lines 53-54).
For PRINT(s), we see the pair (u, s’) at the top, where we remind that s’ represents the
sum of all Z nodes on the way to u (line 58), and u is assumed to be an output node. Then,
we call the print method of 7 which is ready to write the current output, and over which

we add the value s + s’ (line 59).

In order to prove the correctness of the enumeration procedure, one can verify that
ENUMERATE(v) in Algorithm 4 enumerates all the outputs in the set [D](v) one by one,
and without repetitions, which follows from the fact that D is duplicate-free. To bound the
delay between outputs, the fact that D is k-bounded implies that the delay is bounded by
O(k - |wo|) if wy is the first output, or O(k - (|w| + |w'])) if w and w’ are the previous and

next outputs, respectively. Specifically:

e CREATE(v) takes time O(k - |wy)),
e NEXT takes time O(k - |wy|) for the first call, and O(k - (Jw| 4 |w'|)) for the next
call, and

e PRINT(s) takes time O(k - |w'|) where w’ is the current output to be printed.

Overall, ENUMERATE(v) in Algorithm 4 requires O(k - (|w| + |w'|)) delay to write the

next output w’ in the output register, after printing the previous output w.

We end by pointing out that the existence of an enumeration algorithm £ with delay
O(k - (Jw| + |w'|)) between any consecutive outputs w and w’, implies the existence of
an enumeration algorithm £’ with output-linear delay as defined in Section 5.1. We start
noting that k is a fixed value and then the delay of £ only depends on |w| + |w’|. For
depending only on the next output w’, one can perform the following strategy for £’: start
by running £, enumerate the first output wy, advance k - |wg| more steps of £, and stop.
Then continue running £, enumerate the next output w;, advance k - |w;| more steps, and

stop'. By repeating this enumeration process, one can verify that the delay between the

It advancing k - |w| more steps requires printing part of the next outputs ws, ws, . . ., we could store these
outputs in some temporary registers of the RAM model to retrieve them later.

158

i-th output w; and the (i + 1)-th output w; . is O(|w;1]). Therefore, £ has output-linear
delay. U

Operations. The next step is to provide a set of operations that allow extending a Shift-
ECS D in a way that maintains k-boundedness. Fix a Shift-ECS D = (2, V, ¢, 7, \). Then

for any 6-€), vy, ...,v4,v € V and k € Z, we define the operations:

add(®) — v prod(vy,vg) — v/

union(vs,vy) — v shift(v, k) — '

such that [D](v') := {(s; 1)}; [PI(v') := [P[(v1) - [Pl(v2); [PI(V') := [Dl(vs) U
[D](v4); and [D](v') := sh([D](v), k), respectively. Here we assume that the union and
prod respect properties (1) and (2) of a duplicate-free Shift-ECS, namely, [D](v3) and
[D](vy) are disjoint and, for every w € [D](v1) - [DP](v2), there exists a unique way to

decompose w = wy - wy such that wy € [D](v1) and we € [D](ve).

Strictly speaking, each operation above should receive as input the data structure D,
and output a fresh node v’ plus a new data structure D’ = (Q, V' ¢/, 7', \’) such that D’ is
an extension of D, namely, obj C obj’ for every obj € {V,¢,r,A\} and v' € V' \ V. Note
that we assume that each operation can only extend the data structure with new nodes
and that old nodes are immutable after each operation. For simplification, we will not
explicitly refer to D on the operations above, although they modify D directly by adding

new nodes.

To define the above operations, we impose further restrictions on the structure below
the operations’ input nodes to ensure k-boundedness. Towards this goal, we introduce the
notion of safe nodes. We say that a node v € V 1is safe if v is a shift node and either
¢(v) is an output node (i.e., a bottom or product node), or u = {¢(v) is an union node,
odepthp(u) = 1, and 7(u) is a shift node with odepth,,(r(u)) < 2. In other words, v is
safe if it is a shift node over an output node or over a union node with an output on the left

and a shift node on the right, whose output depth is less or equal to 2. The trick then is to

159

show that all operations over Shift-ECSs receive only safe nodes and always output safe
nodes. As we will see, safeness will be enough to provide a light structural restriction on

the operations’ input nodes in order to maintain k-boundedness after each operation.

Next, we show how to implement each operation assuming that every input node is
safe. In fact, the cases of add and shift are straightforward. For add(s) — v" we extend
D with two fresh nodes v" and u such that A(u) = &; A(v') = 0, and £(v') = w. In
other words, we hang a fresh 0-shift node v’ over a fresh s-node u, and output v’. For
shift(v, k) — ¢, add the fresh node v’ to D, and set £(v') = ¢(v) and A\(v) = A\(v) + k.
One can easily check that in both cases the node v’ represents the desired set, is safe, and

k-boundedness is preserved.

To show how to implement prod(vy,vs) — @/, recall that v; and vy are safe and, in
particular, both are shift nodes. Then we need to extend D with fresh nodes v/, v”, and
V" such that £(v") = v, L(v") = L(vy), r(v") = V", L") = L(vg), A(V) = A(vy),
A(v") = ©@ and A(v"") = A(vg) — A(vy). Figure 5.4(a) shows a diagram of this gadget.
One can easily check that v" represents the product of v; and vs, v’ is safe, and the new

version of D is k-bounded whenever D is also k-bounded.

The last operation is union(vs,v4) — v’. The strategy is then to prove that if v3 and
vy are safe nodes, then we can implement the operator and produce a safe node v’. Let us

define v’ as follows:

o If at least one among /(v3) and ¢(vy4) is an output node, assume without loss of
generality that it is (v3). We extend D with nodes v’, v” and v"’, where ¢(v') =
V" L") = L(v3), T(V") = 0", (W) = L(vg), A(v') = A(vz), A(v") = U and
A(v") = A(vq) — A(vs). This construction is identical to the prod construction
shown in Figure 5.4(a), except replacing v, and v, by v3 and v, respectively, and
A(v") from ® to U.

e When both u3 = ¢(v3) and uy = ¢(v,) are union nodes, let k| = A(r(us3)) and let

ky = A(r(uy)). We extend D with fresh nodes v', v}, vh, v}, v}, vl and vg. Define

160

AW = ki, Moy) = U, A(vh) = ko — ki, Mv) = U, A(v)) = k1 + kY — ko,
A(vl) = Uand A(vg) = ko + kb — k1 — k. Then define ¢(v') = vf, £(v]) = {(us),
r(vy) = vy, £(vy) = vy, £(vg) = E(ua), r(vg) = vy, £(v]) = vg, £(vg) = £(r(us)),
r(vi) = vg and (vg) = €(r(us)). We show an illustration of this gadget in

Figure 5.4(b).

We can prove that the last construction has several interesting properties. First, one
can check that [D](v") = [D](vs) U [D](vy4) since each shift value is constructed so that
the accumulated shift value from v’ to each node remains unchanged. Thus, the semantics
is well-defined. Second, union can be computed in constant time in |D| given that we only
need to add a fixed number of fresh nodes. Furthermore, the produced node v’ is safe, even
though some of the new nodes are not necessarily safe. Finally, the new D is 3-bounded
whenever D is 3-bounded. This is straightforward to see for the case when ¢(v3) (or £(vy))
is an output node. To see this for the second case, we first have to notice that ¢(u3) and
{(uy) are output nodes, and that odepth(¢(r(u3))) < 1 and odepth(¢(r(u4))) < 1. We
can check the depth of each node going from the bottom to the top: odepth(vg) < 2,
odepth(vs) < 2, odepth(v)) < 3, odepth(v}) < 1, odepth(v}) < 2, odepth(v}) < 1 and
odepth(v’) < 2.

By the previous discussion, if we start with a Shift-ECS D which is 3-bounded (in
particular, empty) and we apply the add, prod, union and shift operators between safe
nodes (which also produce safe nodes), then the result is 3-bounded as well. Furthermore,
the data structure is fully-persistent (Driscoll, Sarnak, Sleator, & Tarjan, 1986b): for every
node v in D, [D](v) is immutable after each operation. Finally, by Proposition 5.1, the

result can be enumerated with output-linear delay.

Theorem 5.2. The operations add, prod, union and shift take constant time and are
fully persistent. Furthermore, if we start from an empty Shift-ECS D and apply these
operations over safe nodes, the result node v' is always a safe node and the set [D](v) can

be enumerated with output-linear delay (without preprocessing) for every node v.

161

vyt kg — Ky

/

, ¥

/ 15:/U
; // \

v ! Py Y i
//// v (k’g — k‘l) i ug: U \\(// wg: U !
- . / ’ . \ \ ’/ \\ \ \\
, o ! 02 VS r(ug) kY S r(ua) s K
vl y"’/ v y"’/ \wl ‘L \wl N4
£(vr) {(v2) Cluz) L(r(uz)) Llus) £(r(us))
(b) (c)

Figure 5.4. (a) Gadget for prod(D, vy, v, k). (b) Gadget for
union(D, v, v4). We use dashed and solid edges for the left and right map-
pings, respectively. Node names are in grey at the left of each node. Nodes
in square boxes are the input and output nodes of each operation.

The empty- and c-nodes. The last step of constructing our model of Shift-ECS is the
inclusion of two special nodes that produce the empty set and the empty string, called

empty- and e-nodes, respectively.

We start with the empty node, which is easier to incorporate into a Shift-ECS. Consider
a special node | and include it on every Shift-ECS D, such that [D](_L) = (). Then extend
the operations prod, union, and shift accordingly to the empty set, namely, prod(vy, ve) —
| whenever v; or v, is equal to L, union(v, L) = union(L,v) — v, and shift(L, k) — L
for every nodes vy, vy, v, and k € Z. It is easy to check that one can include the | -node

into Shift-ECSs without affecting the guarantees of Theorem 5.2.

The other special node is the e-node. Let € denote a special node, included on every
Shift-ECS D, such that [D](s) = {e¢}. With these new nodes in a Shift-ECS, we need

to revise our notions of output-depth, duplicate-free, and k-boundedness to change the

162

enumeration algorithm, and to extend the operations add, prod, union, and shift over so-

called e-safe nodes (i.e., the extension of safe nodes with ¢).

First, we add the condition that for any Shift-ECS D the e-node is either parentless
(and thus disconnected to the rest of the structure), or if it has any parents, then they must
be parentless union nodes, and the e-node must be the left child of each. We call this the
e-condition. We will see that any node that might be the result of applying the operations

add, prod, union and shift is equivalent to a node in a Shift-ECS D that satisfies this.

The notions of output-depth, duplicate-free, and k-boundedness are mostly unchanged
in this setting: If v is the e-node, then odepth(v) = 0, and if v is a union node with the
e-node as its left child, odepth(v) = 1. No other node has the e-node as a descendant,
so the definition of output-depth remains the same; and the definitions of duplicate-free
and k-bounded remain unchanged as well. By assuming the e-condition, one can see that
enumeration remains identical as before, except now the e-node might be seen once as the

left child of the root. Then we can state the following as a corollary of Proposition 5.1:

Corollary 5.1. Fix k € N. Let C;, be the class of all duplicate-free and k-bounded
Shift-ECSs that satisfy the e-condition. Then one can solve the problem SHIFTECSENUM|[Cy|

with output-linear delay and without preprocessing (i.e. constant preprocessing time).

We now define the notion of e-safe nodes. These are nodes v which satisfy one of three
conditions: (1) v is the e-node, (2) v is safe and none of its descendants is the e-node, and
(3) v is a union node, its left child is the e-node, and its right child is a safe node for which
none of its descendants is the e-node. To guide the constructions, we call these conditions
1, 2 and 3. These conditions will allow us to use the constructions already given for prod,
union, and shift over safe nodes, such as node v, in the case of condition 2, or 7(v), in
the case of condition 3. The rest of this proof will be extending these operations to work
over e-safe nodes, and check that they can be done in constant time, return an e-safe node,
maintain the e-condition in the Shift-ECS, and satisfy the specifications of each operation

(i.e., that for the resulting node v’ the set [D](v’) contains what it should).

163

We define the operation add the same as in a Shift-ECS without €. The operation

add(e) is not defined since the e-node is always part of D.

The prod case is somewhat more involved. First, assume that some node among v,
and vs 1s the e-node (condition 1). Without loss of generality, assume that v; = ¢ . If
vy is the e-node as well, we simply return vq; and if vy is not the e-node (conditions 2
or 3), we simply return v,. The requirements of the construction follow trivially. Now,
assume that both v; and vy satisfy condition 2. For this case we simply return prod(vy, v5)
as it was defined for a Shift-ECS without . Lastly, assume at least one node among v,
and v, satisfies condition 3 and none of them are the e-node. These cases are depicted in
Figure 5.5. We describe them formally as follows, assuming that v’ is the output and using

the operations union and prod as they were defined for a Shift-ECS without ¢.

e If v; satisfies condition 2 and v, satisfies condition 3, define v <— prod(vy, 7(vs))
and v’ < union(vy,v").

e If v satisfies condition 3 and v, satisfies condition 2, define v” < prod(r(vy),vs)
and v’ < union(v", vy).

e If both v; and v, satisfy condition 3, define v < prod(r(vy),r(v2)), v
union(v”, r(v2)), and vy <— union(r(vy), v3). Lastly, define A(v') = U, (V') =

e, and (V') = vy.

One can verify that these constructions work as expected, namely, [D’](v) = [D](v1)-
[D](ve). Also, if vy and v, are e-safe, then v’ is e-safe as well. Also, each construction

does a fixed number of steps, so they take constant time.

Similarly, we address the operation union(vs, v4) — v by considering each case sepa-

rately.

e Assume vs3 is the e-node (condition 1). (1) If v also is the e-node, then we
simply return v’ < . (2) If v3 satisfies condition 2, let v’ be a union node such
that £(v") = € and r(v") = v,. It can be seen that v’ satisfies condition 3 and that

its e-safe. (3) If v, satisfies condition 3, we simply return v’ < vy.

164

, : , : v U
v’ <—union v’ <—union L)
. \ / € union
// ¥y // Y .
/ prod prod / union
| /// / // e
le « V2 \ V1 "l ™~ V2 U1 /) pI’Od V2
// // I // / // //
v \\4) \V / \le/ \P/\\A\
€ r(v2) e r(u) e r(v) € r(vg)
(a) (0) (c)

Figure 5.5. Gadgets for prod as defined for a Shift-ECS with the e-node.

e Assume v3 satisfies condition 2. (1) If vy is the e-node, we return v’ <— union(vg, v3)
using the construction for the case (2) in the previous item. (2) If v, satisfies
condition 2, then we return v’ <— union(vs, v4) as it was defined for Shift-ECSs
without ¢. (3) If v, satisfies condition 3, let v” < union(vs, r(vy)), and let v’ be
a union node such that {(v') = € and r(v) = v”. Again, it can be seen that v’ is
e-safe.

e Assume vj satisfies condition 3. (1) If v, is the e-node, we simply return v’ +— ¢.
(2) If v, satisfies condition 2, we follow the construction given in case (3) of the
previous item. (3) If v, satisfies condition 3, let v" <— union(r(v3),r(vs)) and
let v’ be a union node such that /(v") = € and r(v) = v”. It can be seen that v’ is

¢-safe.

Clearly, in each of these cases above we have that [D](v') = [D](v3) U [D](vs4), and
if v3 and v, are e-safe, then v’ is e-safe as well. In addition, they all take constant time and

in each case the new version of D satisfies the s-condition.

The operation shift(v, k) is defined as follows. If v is the e-node, we return v < . If
v satisfies condition 2, we return v’ <— shift(v, k) as it was defined for Shift-ECSs without
e. If v satisfies condition 3, let v" < shift(r(v), k) and let v’ be a union node such that

((v") = e and r(v) = v”. It can be seen that v’ is e-safe.

By the previous constructions, we can conclude that the operations add, prod, union

and shift, when done over e-safe nodes, can be done in constant time, return an c-safe

165

node, maintain the e-condition in the Shift-ECS, and satisfy the specifications of each
operation. Furthermore, by virtue of Corollary 5.1, the set [D](v) can be enumerated with

output-linear delay for each node v in D.

Theorem 5.3. The operations add, prod, union and shift over Shift-ECS extended with
empty- and c-nodes take constant time. Furthermore, if we start from an empty Shift-
ECS D and apply add, prod, union, and shift over e-safe nodes, the resulting node v' is
always an e-safe node, and the set [D](v) can be enumerated with output-linear delay

without preprocessing for every node v.

For the rest of the chapter, we assume that a Shift-ECSisatuple D = (2, V. {,r, A\, L, ¢)
where we define €2, V. /,r, A as before, and |, € V are the empty and ¢ nodes, respec-
tively. Further, we assume that ¢, r, and \ are extended accordingly, namely, ¢(v) and
r(v) are not defined whenever v € {1 e}, and A : V — QUZ U {U,®, L, e} such that
A(v) = L (M(v) =¢)iffv =L (v = ¢, respectively).

5.3. Evaluation of annotated automata over SLP-compressed strings

This section shows our algorithm for evaluating an annotated automaton over an SLP-
compressed document. This evaluation is heavily inspired by the preprocessing phase
in (Schmid & Schweikardt, 2021), as it primarily adapts the algorithm to the Shift-ECS
data structure. In a nutshell, we keep matrices of Shift-ECS nodes, where each matrix
represents the outputs of all partial runs of the annotated automaton over fragments of the
compressed strings. We extend the operations of Shift-ECS over matrices of nodes, which
will allow us to compose matrices, and thus compute sequences of compressed strings.
Then the algorithm proceeds in a dynamic programming fashion, where matrices are com-
puted bottom-up for each non-terminal symbol. Finally, the matrix that corresponds to the
start symbol of the SLP will contain all the outputs. The result of this process is that each
matrix entry succinctly represents an output set that can enumerated with output-linear

delay.

166

Matrices of nodes. The main ingredient for the evaluation algorithm are matrices of
nodes for encoding partial runs of annotated automata. To formalize this notion, fix an
unambiguous AnnA A = (Q,X,Q,A I, F) and a Shift-ECS D = (Q,V,{,r,\, L, ¢).

We define a partial run p of A over a document d = ajas . ..a, € 3* as a sequence
by bn
p = P17 ... = PDntl

such that p; € @, and foreach i € [1, n] either b, = a; and (¢;, a;, gi+1) € A, orb; = (a;,5)
and (g;, (a;,8),¢;41) € A. Additionally, we say that the partial run p is from state p to
state ¢ if p; = p and p,,.1 = ¢. In other words, partial runs are almost equal to runs, except

they can start and end at any states p and g, respectively.

For the algorithm, we use the set of all) x) matrices where entry M [p,] is a node
in V for every p,q € (). Each node M]|p,q| represents all annotations of partial runs
from state p to state ¢, which can be enumerated with output-linear delay by Theorem 5.3.
Further, M [p, q| = L represents that there is no run, and M [p, ¢] = ¢ that there is a single

run without outputs (i.e., a run that produces the € output).

To combine matrices over D-nodes, we define two operations. The first operation is
the matrix multiplication over the semiring (2% U, - (), {c}) but represented over D.
Formally, let @ = {qi,...,¢n} with m = |@Q|. Then, for two m x m matrices M; and
M, we define M; ® M, such that for every p, q € Q:

(M; ® Ms)[p, q] := union]*, (prod (M1 D, @], Ma[q;, q]))

where union]” | E; := union(...union(union(Ey, Ey), E3) ..., E,,). That is, the node

(M, @ Ms)|p, q] represents the set [, ([D](Mi[p, ¢]) - [D](Mz[gi, q]))-

The second operation for matrices is the extension of the shift operation. Formally,
shift(M, k)[p, q] := shift(M|[p, ¢, k) for a matrix M, k € Z, and p,q € Q. Since each
operation over D takes constant time, overall multiplying M, with M, takes time O(|Q|?)

and shifting M by k takes time O(|Q|?).

167

Algorithm 5 The enumeration algorithm of an unambiguous AnnA A =
(Q,%,Q,A,I,F)overan SLP S = (N, %, R, Sp).

1: procedure EVALUATION(A, S) 15: procedure NONTERMINAL(X)

2: Initialize D as an empty Shift-ECS 16: Mx < {[p,ql = L |p,geQ,p#
3 NONTERMINAL(.Sp) qtu

4 v L {lpgdl > elpge@,p=
5. foreachpe [, g€ Fdo q}

6: v < union(v, Mg, [p, q]) 17 lenx <0

7. ENUMERATE(v, D) 18: fori=1to |R(X)|do

19: Y + R(X)]i]

8: procedure TERMINAL(a) 20: if My is not defined then

90 My {lp,gl = L|pqeQ} 21 if Y € ¥ then
10: for each (p, (a,8),q) € Ado 99 TERMINAL(Y)

1n: Ma[p,q] < s else

union(Ma[p,], add(s)) 24: NONTERMINAL(Y)

2. for each (p,a,q) € A do 25 My My @shift(My, leny)
13: Malp, q] < union(Malp, g, €) 26: leny < lenx +leny

14: len, <1

The algorithm. We present the evaluation algorithm for the SLPENUM problem in Algo-
rithm 5. As expected, the main procedure EVALUATION receives as input an unambiguous
annotated automaton A = (Q,%,Q, A, I, F) and an SLP S = (N, X, R, Sp), and enumer-
ates all outputs in [.A](doc(S)). To simplify the notation, in Algorithm 5 we assume that
A and S are globally defined, and we can access them in any subprocedure. Similarly, we
use a Shift-ECS D, and matrix My and integer leny for every X € N U X, which can

globally be accessed at any place as well.

The main purpose of the algorithm is to compute My and leny recursively. On one
hand, My is a @ x @ matrix where each node entry Mx|p, q| represents all outputs of
partial runs from p to ¢. On the other hand, leny is the length of the string R*(X)
(i.e., the string produced from X'). Both Mx and leny start undefined, and we compute
them recursively, beginning from the non-terminal symbol Sj and by calling the method
NONTERMINAL(Sy) (line 3). After Mg, was computed, we can retrieve the set [A](.S)
by taking the union of all partial run’s outputs from an initial state p € [to a state ¢ € F/,
and storing it in node v (lines 4-6). Finally, we can enumerate [.A](S) by enumerating all

outputs represented by v (line 7).

168

The workhorses of the evaluation algorithm are procedures NONTERMINAL and TER-
MINAL in Algorithm 5. The former computes matrices M x recursively whereas the latter
is in charge of the base case M, for a terminal a € >.. For computing the base case, we
can start with M, with all entries equal to the empty node L (line 9). Then if there exists a
read-annotate transition (p, (a, 8, q) € A, we add an output node s-to M, [p, q], by making
the union between the current node at M, [p, ¢| with the node add(s) (line 11). Also, if a
read transition (p, a, q) € A exists, we do the same but with the e-node (line 13). Finally,

we set the length of len, to 1, and we have covered the base case.

For the recursive case (i.e., procedure NONTERMINAL(X)), we start with a sort of
“identity matrix” Mx where all entries are set up to the empty-node except the ones where
p = q that are set up to the e-node, and the value leny = 0 (lines 16-17). Then we iterate
sequentially over each symbol Y of R(.X'), where we use R(X)[i] to denote the i-th symbol
of R(X) (lines 18-19). If My is not defined, then we recursively compute TERMINAL(Y")
or NONTERMINAL(Y) depending on whether Y is in 3 or not, respectively (lines 20-24).
The matrix My is memorized (by having the check in line 20 to see if it is defined or not)
so we need to compute it at most once. After we have retrieved My, we can compute
all outputs for R(X)[1]... R(X)[i] by multiplying the current version of Mx (i.e., the
outputs of R(X)[1]... R(X)[i — 1]), with the matrix M, shifted by the current length
leny (line 25). Finally, we update the current length of X by adding leny (line 26).

Theorem 5.4. Algorithm 5 enumerates the set [A](S) correctly for every unambigu-
ous AnnA A and every SLP-compressed document S, with output-linear delay and after a

preprocessing phase that takes time O(|A| + |S] x |Q|?).

PROOF. The correctness of the algorithm will follow after proving that for each My,
foran X € Y UN that is reachable from Sy, the set [D] (M x|[p, q]) contains the annotations
of all partial runs of A over doc(X) that start on p and end on ¢. First, let X = a € .
This case can be quickly verified by inspecting the procedure TERMINAL(a), as for each
index, the set [D](M,[p, g]) contains ¢, and the annotations &-in the pair (5; 1) whenever

they correspond. Now, let X be a non-terminal and let R(X) = «. Let &'Y be a nonempty

169

prefix of o where Y is its last symbol. Note that for the empty string, a run of size one
p = qis always valid for any ¢ € @), so we can safely consider that the set M x, as declared
in line 16 stores the correct nodes for the runs that read the empty string, and start and end
on the same node. The proof will follow inductively by proving that My, at the iteration
i = |'Y] of line 18, satisfies that [D](Mx|p, q]) contains all partial annotations from a
run of A over doc(’Y") that starts on p and ends on ¢; that is, after assuming that in line
24, the set [D](Mx/p, q]) contained all partial annotations from a run of .4 over doc(«)
that starts on p and ends on q. We have assumed that the nodes in My store all annotations
properly, so the inductive hypothesis is proven from the definition of the operator ®, as
any possible annotation that should be added can be described by two partial runs, one that
starts on p, reads doc(«) and ends on ¢/, and a second that starts on ¢/, reads doc(Y") and
ends on ¢, so it is properly added to the [D](Mx [p, q]) as the operator ® does consider this
¢ . Plus, it can be seen that the positions that were obtained from My are properly shifted
when added to Mx by assuming the lenx variable is storing the correct length. From this
reasoning, we can conclude that the set [D](Mx|[p, ¢]) contains exactly the annotations

from [A](doc(«)).

To see that the operators add, union, prod and shift are done following all assumptions,
we would like to note that union and prod are always called by respecting the duplicate-
free property. However, this is not necessarily true, at least for the union case since A is
allowed to be ambiguous in partial runs that do not form part of an accepting run. For
simplicity, all statements in the rest of the proof are assumed to be said with respect to
indices Mx[p, q] which are reached when building an output string. In other words, that
there exists an accepting run p = p; LINLUN Pn+1 such that p = py, ¢ = p, with ¢ < r,
and a; ...ay_1Xa,...a, is reachable from S by following production rules in R. In the
case of prod, proving the duplicate-free property is straightforward, since it is only done
in line 25, and the positions on the left side (i.e., the ones taken from My) are all less
or equal than the value lenx has at that point, so by shifting the values from My by this
amount, the sets from either side do not contain any annotation in common. In the case

of union, one can check by inspection that in lines 11 and 13, this is done properly, since

170

transitions do not appear more than once, and one can check that in line 25, if any of the
calls to union done inside the ® operation is done with duplicates, this implies that there
is some annotation that appears in two distinct calls, since each of the union calls is done
over a different index in the matrices My and M, contradicting the assumption that .4
is unambiguous. Therefore, we conclude that the operators add, union, prod and shift are

done properly, and the statement of the theorem follows.

Regarding performance, the main procedure calls NONTERMINAL or TERMINAL at
most once for every symbol. After making all calls to TERMINAL, each transition in A is
seen exactly once, and NONTERMINAL takes time at most O(|R(X)| x |Q]?) not taking

into account the calls inside. Overall, the preprocessing time is O(|A| + [S| x [Q[?). O

We want to finish by noticing that, contrary to (Schmid & Schweikardt, 2021), our
evaluation algorithm does not need to modify the grammar S into Chomsky’s normal
form (CNF) since we can evaluate A over S directly. Although passing S into CNF can
be done in linear time over .S (Schmid & Schweikardt, 2021), this step can incur an extra

cost, which we can avoid in our approach.

5.4. Applications in regular spanners

It was already shown in Chapter 4 that working with annotations directly and then
providing a reduction from a spanner query to an annotation query is sometimes more
manageable. In this section we will do just that: starting from a document-regular span-
ner pair (d, M), we will show how to build a document-annotated automaton pair (d’, .A)
such that M(d) = [A](d'). Although people have studied various models of regular span-
ners in the literature, we will focus here on sequential variable-set automata (VA) (Fagin
et al., 2015) and sequential extended VA (Florenzano et al., 2020). The latter is essen-
tially the model that the work of Schmid and Schweikardt used in their results (Schmid &
Schweikardt, 2021). We present the models in this order, but we present first the reduction

from the latter as it can be done into AnnA directly. In the second half of the section we

171

reduce the former to succinctly annotated automata, an extension of AnnA that allows out-
put symbols to be stored concisely. These reductions imply constant-delay enumeration

for the spanner tasks.

Variable-set automata. A variable-set automaton (VA for short) is a tuple given by
A= (Q, 2, X,A I, F) where () is a set of states, [, ' C (), and A consists of read
transitions (p,a,q) € @ x X x Q and variable transitions (p, F*, q) or (p,*, q) where
p,q € Q and x € X. The symbols +* and 4 are referred to as variable markers of
x, where " is opening and <" is closing. Given a document d = a;...a, € X* a
configuration of A is a pair (g, 7) where ¢ € Q and i € [1,n + 1]. Arun p of Aoverdisa
sequence:

p = (q.i1) = (g2.72) = 5 (Gmst, ims1)

where i; = 1, 4,,11 = n+ 1, and for each j € [1,m], (¢;,0;,¢;+1) € A and either (1)
0j = a;; and i1, = i; + 1, 0r (2) 05 € {F*,7*| x € X} and ij,; = ;. We say that
p 1s accepting if q,,+1 € F and that it is valid if variables are non-repeating, and they
are opened and closed correctly. If p is accepting and valid, we define the mapping p”
which maps = € X to the span [u,v) if, and only if, there exist j,k € [1,m] such that
i; = u,ip = v, and 0; = 7 and o, =1*. We say that A is sequential if every accepting

run is also valid. Finally, define the document spanner [.A] as the function:
[A](d) = {u” | pis an accepting and valid run of A over d}.

Like in AnnAs, we say A is unambiguous if for each mapping i € [A](d) there is exactly

one accepting run p of A over d such that u” = p.

Extended VA. An extended variable-set automaton (or eVA for short) is a tuple 4 =
(Q,2, X, A, I, F) where Q, I, F are defined as in VA, A is a set consisting of letter tran-
sitions (p, a, q) where a € ¥ and p, ¢ € Q or extended variable transitions (p, S, q) where
S C {F*=*| x € X} and S is non-empty; and F' C). A run p over a document

172

d=ay...a, is asequence:
S1 a1 Sa az an Snt1
pP=q —P1L —2q—2P2 —7> " =72 qnt1 — 7 Pnt1

where each S; is a (possibly empty) set of markers, for each i € [1,n], (p;, ai, ¢iy1) € A,
and for each i € [1,n+ 1], if S; is not empty, then (¢;, S;, p;) € A, and p; = ¢;, otherwise.
We say that a run is accepting if p,,+; € F. Also, we say that a run p is valid if variables
are opened and closed in a correct manner: every marker —* and <" must appear at most
once among the sets S ... S,41; if one of them appears, the other does as well; and if
F*€ S; and+4"€ S; then it holds that ¢ < j. For a valid run p, we define the mapping ;*
that maps x to [7, j) iff F*€ S; and+4"€ S;. The spanner [.A] is defined identically as for

VA. The definitions of sequential and unambigous eVA are the same as well.

To motivate the reduction from sequential eVA to annotated automata, consider a doc-

ument d = aab, and a run over d of some (unspecified) eVA with variable set X = {x, y}:

0 {FoAm,) '}
p=aq =@ ¢ %p2—>93—>%—>614—>p4
This run defines the mapping p which assigns p(z) = [2,2) and u(y) = [2,4). To translate
this run to the annotated automata model, first we append an end-of-document character
to d, and then “push” the marker sets one transition to the right. We then obtain a possible

run of an annotated automaton with output set €2 [#€X} over the document d' =

aab#:

s, @FAFY b, (B
p=q = ¢ —"5¢>q¢ —>q

The annotation of this run would then be (2, { F*,—*, F¥})(4, {1}), from where the map-
ping i can be extracted directly. The reduction from extended VA into annotated automata

operates in a similar fashion: the read transitions are kept, and for each pair of transitions

(p, S,4q), (g, a,r) in the former, a transition (p, (a, S),r) is added to the latter.

The equivalence between mappings and annotations is formally defined as follows:

for some document d, a mapping p from X to spans in d is equivalent to an annotation

173

w = (S1,11) ... (Sm, im) if, and only if, for every j € [1,m]:

Sj = {F p(e) =[5, k) U] ple) = [k,45)}-

PROPOSITION 5.2. For any unambiguous sequential extended VA A with state set ()
and transition set A, there exists an AnnA A’ with O(|Q| x |A|) transitions such that each
mapping p € [A](d) is equivalent to some unique w € [A'](d#) and vice versa, for every

document d.

PROOF. Let A = (Q, %, X', A, I, F') be an unambiguous sequential eVA. We build an
annotated automaton A" = (Q', X U {#},Q, A’ I, F’) as follows. Define Q' = Q U {¢*}
for some fresh state ¢*, and I’ = {¢*}. Further, define Q = 21X} anq:

A'={(p,a,q) | a € Zand (p,a,q) € A} U
{(p,(a,9),9) | (p.S:d),(d,a,q) € Aforsome ¢’ € Q} U
{(p.#.¢") |pe F}U
{(p,(#,5),4") | (p,S.q) € Aforsome g € F'}.

To see the equivalence between A and A, letd = a; . . . a,, be a document over ¥, and let

p be an accepting run of A over d of the form:
o Sl al SQ a2 Qn Sn+1
P=aq —P1—>q2—>P2 7 77> qnt1 — 7 Pntl
We define p’ as the following sequence:
/ b1 b2 bn bnt1 4
P=q —q — 7 qpt1 —(

where b; = (a;, S;) if S; is not empty, and b; = a; otherwise, for each i < n. We define
b1 = (#, Sna1) if S,o1 is not empty, and b, ; = # otherwise. Since A is sequential, p
is a valid run which defines a mapping 1” € [.A](d). We can straightforwardly check that

p” is equivalent to ann(p’). It can also be seen directly from the construction that p’ is a

174

run from A’ over d#, and since p’ is uniquely defined from p, we conclude that for every

document d each p € [A](d) is equivalent to some unique w € [A'](d#).

To see the equivalence on the opposite direction, consider an accepting run p’ of A’
over d# as above, where each b;, for ¢ € [1,n], might be either a; or a pair (a;, S). From
the construction, it can be seen that if b; = a;, there exists a transition (g;, a;, g;+1) € A.
Instead, if b; = (a;, S), there exist transitions (g;, S, ¢'), (¢, a;, gi+1) € A forsome ¢’ € Q.
Also, if b, 1 = # then ¢,,,1 € F, and if b1 = (#,.5) there exists (¢,+1,5,¢") € A for
some ¢ € F. We define p as a run of A over d built by replacing each transition in
P’ by the corresponding transition(s) in .[A. We note first that this run is accepting and
valid, and since A is unambiguous, p must be uniquely defined. Indeed, when replacing
(gi, (a;, S),qi+1), we know there exist transitions (g;, S,¢’) and (¢, a;, ¢;+1) in A. Fur-
thermore, this ¢’ must be unique, otherwise we could define a different accepting run that
defines the same mapping. We see that ann(p’) is equivalent to x”, so we conclude that

each annotation w € [A](d) is equivalent to some unique mapping p € [A](d).

To see that A’ is unambiguous, consider towards a contradiction two different accept-
ing runs p} and pf, that retrieves the same annotation. Let ¢ be such that the i-th states in p}
and pf, are different, and note it holds that 1 < ¢ < n + 1 since .A" has a unique final state
q*. By the previous discussion, we can build runs p; and p, of A over d that also define
the same mapping. Furthermore, they differ at index 2: — 1 (the index at which ¢; is in the

p written above), which is not possible since A is unambiguous. U

Combining Proposition 5.2 and Theorem 5.1, we get a constant-delay algorithm for
evaluating an unambiguous sequential extended VA over a document, proving the exten-
sion of the result in (Schmid & Schweikardt, 2021). Notice that the result in (Schmid &
Schweikardt, 2021) is for deterministic VA, where here we generalize this result for the

unambiguous case, plus the constant delay.

175

Succinctly annotated automata. For the algorithmic result of sequential (non-extended)
VA, we need an extension to annotated automata which features succinct representations

of sets of annotations.

A succinct enumerable representation scheme (SERS) is a tuple:
S=(R, Q| |,LE)

made of an infinite set of representations R, and an infinite set of annotations 2. It in-
cludes a function | - | that indicates, for each » € R and o € (2, the sizes |r| and |5,
i.e., the number of units needed to store r and &-in the underlying computational model
(e.g., the RAM model). The function £ maps each element r € R to some finite non-
empty set L(r) C (2. Lastly, there is an algorithm £ which enumerates the set £(r) with
output-linear delay for every » € R. Intuitively, a SERS provides us with representa-
tions to encode sets of annotations. Moreover, there is the promise of the enumeration
algorithm £ where we can recover all the annotations with output-linear delay. This repre-
sentation scheme allows us to generalize the notion of annotated automaton for encoding

an extensive set of annotations in the transitions.

FixaSERS § = (R, Q, ||, £,). A Succinctly Annotated Automaton over S (sAnnA
for short) is a tuple A = (@, 3, Q, A, I, F') where all sets are defined like in AnnA, except
that in A read-annotate transitions are of the form (p, (a,7),q) € @ X (X x R) x Q. That
is, transitions are now annotated by a representation which encodes sets of annotations
in Q. For a read-annotate transition § = (p, (a,r), q), we define its size as |§| = |r|+ 1 and
for a read transition 0 = (p, a, q) we define its size as |§| = 1. A run p over a document

d=ay ...a, is also defined as a sequence:

' b b bn
pP:=q1 — Q2 — ... — (Qpn+1

with the same specifications as in AnnA with the difference that it either holds that b; = a;,
or b; = (a;,r) for some representation . We now define the set of annotations of p as:

ann(p) = ann(by, 1) - ... - ann(b,,n) such that ann(b;,i) = {(s5¢) | - € L(r)} if

176

b; = (a,r), and ann(b;,i) = {e} otherwise. The set [.A](d) is defined as the union of sets
ann(p) for all accepting runs p of A over d. We say that 4 is unambiguous if for every
document d and every annotation w € [.A](d) there exists only one accepting run p of A
over d such that w € ann(p). Finally, we define the size of A as [A| = > ",_, |d|, and the
size of A as |A| = |Q] + |A|.

This annotated automata extension allows for representing output sets more compactly.
Moreover, given that we can enumerate the set of annotations with output-linear delay, we

can compose it with Theorem 5.1 to get an output-linear delay algorithm for the whole set.

Theorem 5.5. Fix a SERS S. There exists an enumeration algorithm that, given an
unambiguous sAnnA A over S and an SLP S, it runs in | A|> x |S|-preprocessing time and

output-linear delay for enumerating [A](doc(S)).

For this proof, we will use an extension of Shift-ECSs called succinct Shift-ECSs.
A succinct Shift-ECSs is a tuple D = (S,V,€,r, A\, L, ¢e), similar to Shift-ECS with the
difference that the output set has been replaced by representations from a SERS S. The
set of strings associated to a node v € D is defined as follows: If A\(v) = r € R, where
R is the set of representations in S, then [D](v) = L(r) x {1}. The rest of the sets
[[f)]] (v) for union, product, and shift nodes v remain unchanged, and so are the notions of
duplicate-free, k-bounded and e-safe nodes, along with the operations for add, prod, union

and shift. We will extend Proposition 5.3 for this data structure as follows:

PROPOSITION 5.3. The operations prod, union and shift over succinct Shift-ECSs ex-
tended with empty- and e-nodes take constant time, and the operation add with a represen-
tation r as argument takes time O(|r|). Furthermore, if we start from an empty succinct
Shift-ECS D and apply add, prod, union, and shift over c-safe nodes, the resulting node v’
is always an e-safe node, and the set [D](v) can be enumerated with output-linear delay

without preprocessing for every node v.

177

PROOF. For this proof, we need to be a bit more specific regarding the enumeration
algorithm &£ of an SERS §. Precisely, we assume that £ has an associated function yield
and a constant ¢, and its procedure is to receive r and then allow up to |L£(r)| calls to
yield. Each of these calls produces a different annotation - € £(r) and takes time at
most ¢ - (| 5| + 1) for some fix constant c. Each of these annotations carries a flag end
which is true if, and only if, it is the last output of the set. We also assume that a sequence
of |£(r)| calls to yield might happen again with the same time bounds after the last call

had set end to true.

We start this proof by re-stating that every definition in the Shift-ECS data structure
is unchanged in its succinct version. The only difference is the definition of [D](v) for a

bottom node v € D.

First, we shall prove a version of Proposition 5.1 in this model, namely, that if a suc-
cinct Shift-ECS D is duplicate-free and k-bounded, then the set [D](v) can be enumerated
with output-linear delay for every v € D. We do this by adapting the proof of Proposi-
tion 5.1 to handle this new type of bottom node. Let S = (R, €2, | - |, £, £) be the SERS

associated to D and let ¢’ be the constant associated to &.

The main idea is to modify iterator 74 from Algorithm 4 so that it stores, besides a
value v and a flag hasnext, an annotation 5. The iterator fully makes use of the fact that
the yield procedure from &£ retreives an output, evolves the internal iterator so that the
next call produces the next output, and also says at each point if the current output was the
last one from the set or not. The overall strategy is then to call yield in NEXT, store the
retrieved output in 55 and in PRINT, print whatever is currently stored in 5- More precisely,
the CREATE procedure initializes £ so that the next time it calls yield it prints the first
output in the set £(r), and initializes hasnext to true. NEXT first checks if hasnext is set
to true, and returns false if it is not the case; otherwise it calls yield, stores the output in
o5 and returns true. If the output of yield is end, then it set hasnext to false and returns

false. Finally, PRINT with input s simply prints the pair (5; s 4+ 1). It can be seen that the

178

methods follow the necessary specifications to ensure that the correctness of the algorithm

still holds for this version of the data structure.

To show the time bounds, we bring attention to the fact that the only difference in the
algorithm time-wise is the time spent printing each pair (5;), as now this takes c- (| | +1).
Since Algorithm 4 was proven to have delay O(k - (Jw| + |w'|)) to write output w’ after
writing w for non-succinct Shift-ECS, we state that the same delay holds for this version of
the algorithm since the time added is O(|w|). This implies output-linear delay by following

the same reasoning than the proof of Proposition 5.1.

The rest of the proof pertains the operations add, prod, union and shift. It is not hard to
see that they can be kept unchanged and maintain all the conditions in the statement, with
the sole exception of add(r), which now adds a representation r to the structure and takes

|r| time. This concludes the proof. O

PROOF OF THEOREM 35.5. The algorithm that we give to prove the statement is ex-

actly Algorithm 5 line-by-line, with the sole exception of lines 10-11, which now read:

for each (p, (a,7),q) € A do
Malp, q] 4 union(Ma[p, q], add(r))

The rest of the proof follows from the reasoning of the proof of Theorem 5.4, and by
noticing that the definition of the set [D](v) = £(r) x {1} satisfies what is expected for
an index M,[p, q]. That is, that for every partial run p of A over a that starts on p and end
on ¢, all annotations from the set ann(p) are included. The fact that the operations are

done duplicate-free also follows from the fact that .4 is assumed to be unambiguous. [J

The purpose of sAnnA is to encode sequential VA succinctly. Indeed, as shown
in (Florenzano et al., 2020), representing sequential VA by extended VA has an exponen-
tial blow-up in the number of variables that cannot be avoided. Therefore, the reduction

from Proposition 5.2 cannot work directly. Instead, we can use a Succinctly Annotated

179

Automaton over some specific SERS to translate every sequential VA into the annotation

world efficiently.

PROPOSITION 5.4. There exists an SERS S such that for any unambiguous sequential
VA A with state set () and transition set A there exists a sSAnnA A over S of size O(|Q| x
|A|) such that for every document d, each mapping 11 € [A](d) is equivalent to some

unique w € [A](d#) and vice versa. Furthermore, the number of states in A is in O(|Q)).

PROOF. The SERS that we will consider are Enumerable Compact Sets as they were
presented in Chapter3, defined over the output set 2 = {F* —+*| x € X'}, with the sole
difference that the sets of outputs stored in a node no longer contain strings in €2*, but
subsets of (2 instead. This difference is merely technical and has no influence in the time
bounds of an ECS, as long as it is guaranteed to be duplicate-free (called unambiguous in

Chapter 3).

First we assume that all transitions in A are reachable from some ¢ € I, and all of them
reach an accepting state. We know that in the VA A, the graph induced by the variable
transitions is a DAG, otherwise it would not be sequential. We start with an empty ECS D
and define a matrix K [p, ¢, that first starts with the empty node in each index except the
indices in the diagonal (those that satisfy p = ¢), which have the € node. The idea is that
at the end of this algorithm, Lp (K [p, q]) contains all sets of variable markers that can be
seen in a path from p to ¢ that does not contain a letter transition. We build this matrix by
iterating over the variable transitions in .A following some topological order of the DAG,
starting from a root. For each variable transition (p, V, ¢q), let u <— add(V") and for each
P’ € @ that can reach p in the DAG assign K[p/, q] < union(K[p', ¢, prod(K[p, p], u)).
The time of this algorithm is |Q] x |.A].

After doing this, we perform a construction analogous to the one done in Proposi-
tion 5.2, in which we replace the extended variable transitions (p,.S,q) by transitions
(p,r,q) where r = K]|p,q|, which happens every time K|[p, ¢] is not the empty node.

The proof follows from this result as well. U

180

By Proposition 5.4 and Theorem 5.5 we prove the extension of the output-linear delay

algorithm for unambiguous sequential VA.

5.5. Constant-delay preserving complex document editing

In this section, we show that the results obtained by Schmid and Schweikardt (Schmid
& Schweikardt, 2022) regarding enumeration over document databases and complex doc-
ument editing still hold, maintaining the same time bounds in doing these edits, but allow-
ing output-linear delay. We also include a refinement of the result for whenever the edits
needed are limited to the concatenation of two documents. To be precise, we will give an

overview of the following theorem.

Theorem 5.6. Let D = {d,, ... ,d,,} be a document database that is represented by an
SLP S in normal form. Let Ay, . .., Ay be unambiguous sequential variable-set automata.
When given the query data structures for S and A, ..., Ay, and a CDE-expression ¢
over D, we can construct an extension S’ of S and new query data structures for S' and

Ay, ..., Ay, and a new non-terminal A of S', such that doc(A) = eval(y).

e [f ¢ contains operations other than concat, we require S to be strongly bal-
anced. Then, S’ is also strongly balanced, and this construction can be done
O(k - || - log |d*|) time in data-complexity where |d*| = | max,(D)]|.

e If © only contains concat, then this can be done in O(k - |p|) time in data-

complexity.

Afterwards, upon input of any d € docs(S’) (represented by a non-terminal of S’) and

any i € [1,m], the set [A;](d) can be enumerated with constant-delay.

The version of this result shown in (Schmid & Schweikardt, 2022) had extended VA
instead of VA, and logarithmic delay instead of constant-delay. We dedicate the rest of this
section to define the concepts we have not yet introduced in Theorem 5.6, and show how

the techniques presented in (Schmid & Schweikardt, 2022) allow us to obtain this result.

181

Normal form, balanced and rootless SLPs. We define a rootless SLP as a triple S =
(N,3, R), where N is a set of non-terminals, ¥ is the set of terminals, and R is a set
of rules. Rootless SLPs are defined as SLPs with the difference that there is no starting
symbol, and thus doc(S) is not defined. Instead, we define doc(A) for each A € N as
doc(A) = R*(A). We say that S is in Chomsky normal form (or just normal form) if every
rule in R has the form A — aor A — BC, where a € ¥ and A, B,C € N. Also, we
say that S is strongly balanced if for each rule A — BC, the value ord(B) — ord(C) is
either -1, 0 or 1, where ord(.X) is the maximum distance from X to any terminal in the

derivation tree.

Document Databases. A document database over 3 is a finite collection D = {d1, ..., d,,}
of documents over . Document databases are represented by a rootless SLP as follows.
For an SLP S = (N, %, R), let docs(S) = {doc(A) | A € N} be the set of documents
represented by S. The rootless SLP S is a representation for a document database D if

D C docs(S).

For a document database D, it is assumed that a rootless SLP S that represents D is in
normal form and, for the effects of the first bullet point of Theorem 5.6, strongly balanced.
It is also assumed that for each nonterminal A for which its rule has the form A — BC,
the values | doc(A)|, ord(A) and nonterminals B and C' are accessible in constant time.
All these values can be precomputed with a linear-time pass over S. We call S along with

constant-time access to these values the basic data structure for S.

Complex Document Editing. As in (Schmid & Schweikardt, 2022), given a document
database D = {d,,...,d,,} our goal is to create new documents by a sequence of text-
editing operations. Here we introduce the notion of a CDE-expression over D, which is

defined by the following syntax:

= dg,l € [1,m] | concat(y, ¢) | extract(y, i, 7) | delete(y, i, j) |

insert(y, p, k) | copy(p, i, j, k)

182

where the values i, j are valid positions, and k is a valid gap. The semantics of these

operations, called basic operations, works as follows:

concat(d,d’) = d-d insert(d,d', k) = d[1,k)-d-d[k,|d| + 1)
extract(d,i,7) = d[i,j + 1) delete(d,i,j) = d[1,i)-d[j + 1,|d| + 1)
copy(d,i,j, k) = insert(d,d[i,j + 1), k)

We write eval(p) for the document obtained by evaluating ¢ on D according to these se-

mantics. For an operation extract(y,i,j), delete(y,i,7), insert(p, ¢, k), or

copy(yp,i,J,k), i, are valid positions if i,7 € [1,|eval(p)

|, and k is a valid gap if
k € [1,]eval(yp)| + 1]. We define |p| as the number of basic operations in ¢. For adding
these new documents in the database we will use the notion of extending a rootless SLP. A
rootless SLP S" = (N', X, i) is called an extension of S if S is in normal form, N C N,
and R'(A) = R(A) for every A € N. In this context, we call N’ \ N the set of new
non-terminals. We define the maximum intermediate document size | max,(D)| induced
by a CDE-expression ¢ on a document database D as the maximum size of eval(v)) for

any sub-expression ¢ of ¢ (i.e., any substring 1/ of ¢ that matches the CDE syntax).

Having defined most of the concepts mentioned in Theorem 5.6, we can re-state the
following Theorem from (Schmid & Schweikardt, 2022), which will be instrumental in

the final proof.

Theorem 5.7 ((Theorem 4.3 in (Schmid & Schweikardt, 2022))). Let D be a document
database represented by a strongly balanced rootless SLP S in normal form. When given
the basic data structure for S and a CDE-expression ¢ over D, we can construct a strongly
balanced extension S’ of S, along with its basic data structure, and a non-terminal A of
S’ such that doc(A) = eval(y). This construction takes time O (|| - log(| max,(D)|)).

In particular, the number of new non-terminals |N'\ N| is in O(|¢| - log(] max,(D)])).

For the second bullet point in Theorem 5.6, we use the following observation, which

comes from the fact that applying concat to an SLP amounts to adding a single production.

183

OBSERVATION 5.1. Let D be a document database represented by a rootless SLP S in
normal form. Given the basic data structure for S and a CDE-expression p over D which
only mentions concat, we can construct an extension S’ of S, along with its basic data
structure, and a nonterminal A of S' such that doc(A) = eval(). This construction takes

time O(|g|). In particular, the number of new non-terminals |N' \ N| is in O(|p|).

The query data structure. The structure we will use is the one produced in Theorem 5.5.
This structure is built by an algorithm that receives an SLP .S, an unambiguous sAnnA A,
and produces a succinct Shift-ECS D indexed by the matrices M 4, for each non-terminal
Ain S. These matrices store nodes v = M 4[p, q] such that [D](v) contains all partial an-
notations from a path of .4 which starts p, ends in ¢, and reads the string doc(A). Note that,
although the algorithm receives a “rooted” SLP, it can be adapted quite easily to rootless
SLPs by adding a node v4 for each non-terminal A in S, builtas v4 = unionger(Malqo, q])

(the same construction that was done for S in the algorithm).

We define the query data structure for S and A as the mentioned succinct Shift-ECS
along with constant-time access to every index My[p,q| for states p and ¢ and non-
terminal A. Note that for each A it holds that [D](v4) = [A](doc(A)). In particular,
if S represents a document database D, then for each d € D there is a v in D for which
[D](v) = [A](d). Recall that for every node v € D, the set [D](v) can be enumerated

with output-linear delay.

Lemma 5.2. Let S be an SLP in normal form and an extension S’ of S with new non-
terminals N = N’ \ N. Also, let A be an unambiguous sAnnA and assume we are given
the query data structure for S and A, and the basic data structure for S’. We can construct

the query data structure for S’ and A in O(|A]? - |N|) time.

PROOF. Let D be the succinct Shift-ECS associated to the query data structure for S
and A and let R = R'\ R be the set of new rules in S’. Consider the DAG that is induced by
this set. We can go over these new rules A — BC' in a bottom-up fashion, starting from the

ones where B, C' € N, and define the nodes M ;[p, q] = (Mp®shift(M¢, | doc(B)|))[p, ¢

184

for each p, ¢ € (). Then, we build the nodes v ; for each new non-terminal A as defined.
The new nodes are created by application of the Shift-ECS operations add, union, prod
and shift which create the succinct Shift-ECS D’ that defines the query data structure for
S” and A. The procedure takes O(|Q[* - | N]) time. O

We finally have all the machinery to prove Theorem 5.6, extending the results shown

in (Schmid & Schweikardt, 2022) for sequential VA and with output-linear delay.

Proof of Theorem 5.6. Let us first reduce the variable-set automata A, . .. A to sAnnAs

Y,..., A} using the construction of Proposition 5.4. Note, however, that this reduction
requires the input document to be modified as well. This can be solved by adding a non-
terminal A, for each A € N, and arule Ay, — AH, where H is a new non-terminal with
the rule H — #. Then, in the query data structure for S and A’, the nodes v 4 are defined
over the matrices M 4, instead. That way, when the user chooses a document d € docs(.S)
and a variable set automata A;, she can be given the set [.A;](d#) as output. Note that this

has no influence in the time bounds given for the edit so far, except for a factor that is

linear in |NV|.

We can see now that the result follows due to Theorem 5.7, Observation 5.1, and
Lemma 5.2. The fact that for each d € docs(S’) the set [A](d) can be enumerated

with output-linear delay follows from the definition of the query data structure for S” and

A. g

185

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we developed a framework based on MSO to handle enumeration queries
— called the Annotators framework. As a proof of concept, we used it to build three
different models that perform output-linear enumeration: (1) MSO queries over nested
documents, (2) context-free grammar queries over strings, and (3) regular queries over
SLP-compressed documents. These results are given with several extensions: (1) allows
one-pass-streaming computation over the document, (2) is given for three different frag-
ments of context-free grammars, each with tight complexity bounds, and (3) are shown
to be compliant with other useful frameworks that work on compressed documents. Fur-
thermore, the work improves on other known results in the literature, especially from the

perspective of document spanners.
We attribute these achievements to two main factors:

The use of an intuitive model for the query instances, namely, the Annotator frame-
work. While document spanners have been studied extensively and with reasonable suc-
cess, the task of enumerating span assignments can be simplified, in our opinion, a lot by
forgetting about the spans themselves. Annotated automata and their derivatives can be
seen as a version of document spanners in which a ever-present difficulty, which is having

multiple symbols per document position, is completely avoided.

Using a modular data structure which is almost fully independent to the query language
to represent the enumerable output data. Although the algorithm itself that builds the
structure can be derived from already known results for circuits, the Enumerable Compact
Sets and Enumerable Compact Sets with Shifts data structures streamline the building
process significantly. The differences between our framework and previous algorithms for
circuits are most patent in Chapter 3, as it is used to update the complete data structure in

constant (data-independent) time.

186

The shown results also leave open future work in different avenues of improvement.

We will list them by organizing them by the three main chapters.

Regarding the work detailed in Chapter 3, one direction of future work is to find a
streaming evaluation algorithm with polynomial update-time for non-deterministic VPAnn
(1.e., in the size of the VPAnn). In (Amarilli et al., 2019a), the authors provided a poly-
time offline algorithm for non-deterministic word annotators (called vset automata). They
extended this result to trees in (Amarilli et al., 2019b). One could use these techniques in
Algorithm 2; however, it is unclear how to extend ECS to eliminate duplicates in a natural

way.

Regarding space resources, another direction is to find an “instance optimal” streaming
evaluation algorithm for VPAnn. As we mentioned, this problem generalizes the weak
evaluation problem stated in (Segoufin & Vianu, 2002), given that it also considers the

space to represent the output compactly.

Finally, it would be interesting to explore practical implementations. We believe that
the data structure and algorithm presentation are well-suited for this and that they leave

space for pertinent optimizations.

In Chapter 4 we presented our formalism of annotated grammars and our results on
the efficient enumeration of all annotations of an input string. Our results achieve output-
linear delay, and cubic-time preprocessing if the grammar is unambiguous, quadratic-time

if it is rigid, and linear-time for profiled-deterministic PDAnns.

The main question left open in the chapter is that of the precise complexity of this task,
depending on the grammar formalism. For instance, can we improve the O(n?) algorithm
to match the complexity of Valiant’s parser? For which grammar classes can we extend the
linear-time preprocessing approach? We believe, however, that an absolute classification
is out of reach, given that classifying the fine-grained complexity of parsing is still open

to a large extent even in the case of unannotated CFGs.

187

Given that the enumeration task is at least as difficult as parsing, it would be inter-
esting to know about a tighter lower bound for enumeration in some fragment that is not

immediately derivable from the parsing task itself.

With regards to Chapter 5, one natural direction for future work is to study which
other compression schemes allow output-linear delay enumeration for evaluating anno-
tated automata. To the best of our knowledge, the only model for compressed data in
which spanner evaluation has been studied is SLPs. However, other models (such as some
based on run-length encoding) allow better compression rates and might be more desirable

results in practice.

Regarding the Shift-ECS data structure, it would be interesting to see how further
one could extend the data structure while still allowing output-linear delay enumeration.
Another aspect worth studying is whether there are enumeration results in other areas that

one can improve using Shift-ECS.

Another aspect that might be improvable in Shift-ECS, or even the original ECS data
structure, is the fact that output-linear delay allows an enumeration scheme where the user
waits O(|w|) time to see a single symbol of w. Is there more fine-grained enumeration

bound which produces each output symbol in an output string with constant-delay?

One more direction is seeing if the extending the concisely annotated automata model
complex models of computation, such as Tree Automata or Pushdown Automata allows

for further improvements in known results related to spanner evaluation.

Lastly, it would be interesting to study whether one can apply fast matrix multiplication
techniques to Algorithm 5 to improve the running time to sub-cubic time in the number

of states.

188

REFERENCES

Abboud, A., Backurs, A., & Williams, V. V. (2018). If the current clique algorithms are
optimal, so is Valiant’s parser. SIAM J. Comput., 47(6).

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer
algorithms. Addison-Wesley.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. Addison
wesley, 7(8), 9.

Altinel, M., & Franklin, M. J. (2000). Efficient filtering of XML documents for selective
dissemination of information. In Vidb (pp. 53—64).

Alur, R., Fisman, D., Mamouras, K., Raghothaman, M., & Stanford, C. (2020). Stream-
able regular transductions. Theor. Comput. Sci., 807, 15-41.

Alur, R., & Madhusudan, P. (2004a). Visibly pushdown languages. In Stoc.

Alur, R., & Madhusudan, P. (2004b). Visibly pushdown languages. In Proceedings of the
36th annual ACM symposium on theory of computing, chicago, il, usa, june 13-16,
2004 (pp. 202-211).

Amarilli, A., Bourhis, P., Jachiet, L., & Mengel, S. (2017). A circuit-based approach to
efficient enumeration. In Icalp (Vol. 80, pp. 111:1-111:15).

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019a). Constant-delay enumera-
tion for nondeterministic document spanners. In Icdt (pp. 22:1-22:19).

Amarilli, A., Bourhis, P, Mengel, S., & Niewerth, M. (2019b). Enumeration on trees with
tractable combined complexity and efficient updates. In Pods (pp. 89—103).

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2019¢). Constant-delay enumera-
tion for nondeterministic document spanners. In icdt.

Amarilli, A., Bourhis, P,, Mengel, S., & Niewerth, M. (2019d). Enumeration on trees with
tractable combined complexity and efficient updates. In pods.

Amarilli, A., Bourhis, P., Mengel, S., & Niewerth, M. (2020). Constant-delay enumeration

for nondeterministic document spanners. TODS.

https://arxiv.org/abs/1504.01431
https://arxiv.org/abs/1504.01431
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1174&context=cis_papers
https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2003.02576
https://arxiv.org/abs/2003.02576
https://dl.acm.org/journal/tods

189

Arenas, M., Croquevielle, L. A., Jayaram, R., & Riveros, C. (2019). Efficient logspace
classes for enumeration, counting, and uniform generation. In Pods (pp. 59-73).

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues
in data stream systems. In Sigmod (pp. 1-16).

Bagan, G. (2006a). MSO queries on tree decomposable structures are computable with
linear delay. In Csl (pp. 167-181).

Bagan, G. (2006b). MSO queries on tree decomposable structures are computable with
linear delay. In Csl

Bagan, G., Durand, A., & Grandjean, E. (2007). On acyclic conjunctive queries and
constant delay enumeration. In Cs/ (pp. 208-222).

Bar-Yossef, Z., Fontoura, M., & Josifovski, V. (2005). Buffering in query evaluation over
XML streams. In Pods (pp. 216-227).

Bar-Yossef, Z., Fontoura, M., & Josifovski, V. (2007). On the memory requirements of
XPath evaluation over XML streams. J. Comput. Syst. Sci., 73(3), 391-441.

Barloy, C., Murlak, F., & Paperman, C. (2021). Stackless processing of streamed trees. In
Pods.

Berkholz, C., Gerhardt, F., & Schweikardt, N. (2020). Constant delay enumeration for
conjunctive queries: a tutorial. ACM SIGLOG News, 7(1), 4-33.

Berkholz, C., Keppeler, J., & Schweikardt, N. (2017). Answering conjunctive queries
under updates. In Pods (pp. 303-318).

Berstel, J. (2013). Transductions and context-free languages. Springer-Verlag.

Boucher, C., Gagie, T., I, T., Koppl, D., Langmead, B., Manzini, G., ... Rossi, M. (2021).
PHONI: streamed matching statistics with multi-genome references. In A. Bilgin,
M. W. Marecellin, J. Serra-Sagrista, & J. A. Storer (Eds.), 31st data compression
conference, DCC 2021, snowbird, ut, usa, march 23-26, 2021 (pp. 193-202). IEEE.

Bourhis, P., Grez, A., Jachiet, L., & Riveros, C. (2021). Ranked enumeration of MSO
logic on words. In Iedt (Vol. 186, pp. 20:1-20:19).

Bourhis, P, Reutter, J. L., & Vrgoc, D. (2020). JSON: Data model and query languages.
Inf. Syst., 89, 101478.

190

Brahem, M., Zeitouni, K., & Yeh, L. (2020). ASTROIDE: A unified astronomical big
data processing engine over spark. /IEEE Trans. Big Data, 6(3), 477-491.

Bucchi, M., Grez, A., Quintana, A., Riveros, C., & Vansummeren, S. (2022). CORE: a
complex event recognition engine. Proc. VLDB Endow., 15(9), 1951-1964.

Caralp, M., Reynier, P., & Talbot, J.-M. (2015). Trimming visibly pushdown automata.
Theor. Comput. Sci., 578, 13-29.

Chen, S., & Lai, C. (2023). Patent litigation prediction using machine learning approaches.
In C. Stephanidis, M. Antona, S. Ntoa, & G. Salvendy (Eds.), HCI international
2023 posters - 25th international conference on human-computer interaction, HCII
2023, copenhagen, denmark, july 23-28, 2023, proceedings, part V (Vol. 1836, pp.
389-395). Springer.

Chen, Y., Davidson, S. B., & Zheng, Y. (2006). An efficient XPath query processor for
XML streams. In Icde (p. 79).

Chirkova, R., & Yang, J. (2012). Materialized views. Found. Trends Databases, 4(4),
295-405.

Chomsky, N., & Schiitzenberger, M. P. (1959). The algebraic theory of context-free
languages. In Studies in logic and the foundations of mathematics (Vol. 26).

Claude, F., & Navarro, G. (2011). Self-indexed grammar-based compression. Fundam.
Informaticae, 111(3), 313-337.

Courcelle, B. (2009). Linear delay enumeration and monadic second-order logic. Discret.
Appl. Math., 157(12).

Driscoll, J. R., Sarnak, N., Sleator, D. D., & Tarjan, R. E. (1986a). Making data structures
persistent. In Stoc.

Driscoll, J. R., Sarnak, N., Sleator, D. D., & Tarjan, R. E. (1986b). Making data structures
persistent. In Stoc (pp. 109-121).

Durand, A., & Grandjean, E. (2007). First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4), 21.

Fagin, R., Kimelfeld, B., Reiss, F., & Vansummeren, S. (2015). Document spanners: A
formal approach to information extraction. J. ACM, 62(2), 12:1-12:51.

http://www-igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1963-7ChomskyAlgebraic.pdf
http://www-igm.univ-mlv.fr/~berstel/Mps/Travaux/A/1963-7ChomskyAlgebraic.pdf
https://www.sciencedirect.com/science/article/pii/0022000089900342
https://www.sciencedirect.com/science/article/pii/0022000089900342

191

Fang, X., Wu, H., Jing, J., Meng, Y., Yu, B., Yu, H., & Zhang, H. (2024). NSEP:
early fake news detection via news semantic environment perception. Inf. Process.
Manag., 61(2), 103594.

Filiot, E., Gauwin, O., Reynier, P., & Servais, F. (2019). Streamability of nested word
transductions. LMCS, 15(2).

Filiot, E., Raskin, J., Reynier, P., Servais, F., & Talbot, J. (2018). Visibly pushdown
transducers. JCSS, 97, 147-181.

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., & Vrgoc, D. (2018). Constant
delay algorithms for regular document spanners. In Pods.

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., & Vrgoc, D. (2020). Efficient
enumeration algorithms for regular document spanners. ACM Trans. Database Syst.,
45(1), 3:1-3:42.

Fortuna, P., Soler Company, J., & Wanner, L. (2021). How well do hate speech, toxicity,
abusive and offensive language classification models generalize across datasets? Inf.
Process. Manag., 58(3), 102524.

Freydenberger, D. D. (2019). A logic for document spanners. Theory Comput. Syst.,
63(7), 1679-1754.

Freydenberger, D. D., Kimelfeld, B., & Peterfreund, L. (2018). Joining extractions of
regular expressions. In Pods (pp. 137-149).

Gauwin, O., Niehren, J., & Roos, Y. (2008). Streaming tree automata. Inf. Process. Lett.,
109(1), 13-17.

Gauwin, O., Niehren, J., & Tison, S. (2009a). Bounded delay and concurrency for earliest
query answering. In Lata (Vol. 5457, pp. 350-361).

Gauwin, O., Niehren, J., & Tison, S. (2009b). Earliest query answering for deterministic
nested word automata. In Fcr (Vol. 5699, pp. 121-132).

Ginsburg, S., & Ullian, J. (1966). Ambiguity in context free languages. JACM, 13(1).

Gou, G., & Chirkova, R. (2007). Efficient algorithms for evaluating XPath over streams.
In Sigmod (pp. 269-280). ACM.

Green, T. J., Gupta, A., Miklau, G., Onizuka, M., & Suciu, D. (2004). Processing XML

https://arxiv.org/abs/1803.05277
https://arxiv.org/abs/1803.05277

192

streams with deterministic automata and stream indexes. ACM Trans. Database
Syst., 29(4), 752-788.

Grez, A., & Riveros, C. (2020). Towards streaming evaluation of queries with correlation
in complex event processing. In Icdt (Vol. 155, pp. 14:1-14:17).

Grez, A., Riveros, C., & Ugarte, M. (2019). A formal framework for complex event
processing. In Iedt (pp. 5:1-5:18).

Grez, A., Riveros, C., Ugarte, M., & Vansummeren, S. (2021). A formal framework for
complex event recognition. ACM Trans. Database Syst., 46(4), 1-49.

Idris, M., Ugarte, M., & Vansummeren, S. (2017). The dynamic Yannakakis algorithm:
Compact and efficient query processing under updates. In Sigmod (pp. 1259-1274).

ITU. (2023). Facts and figures 2023 - internet use. https://www.itu.int/itu
—-d/reports/statistics/2023/10/10/ff23-internet-use/. (Ac-
cessed: 2024-02-20)

Jerrum, M., Valiant, L. G., & Vazirani, V. V. (1986). Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43, 169—188.

Josifovski, V., Fontoura, M., & Barta, A. (2005). Querying XML streams. VLDB J., 14(2),
197-210.

Kara, A., Nikolic, M., Olteanu, D., & Zhang, H. (2020). Trade-offs in static and dynamic
evaluation of hierarchical queries. In Pods (pp. 375-392).

Kieffer, J. C., & Yang, E. (2000). Grammar-based codes: A new class of universal lossless
source codes. IEEE Trans. Inf. Theory, 46(3), 737-754.

Kumar, V., Madhusudan, P., & Viswanathan, M. (2007). Visibly pushdown automata for
streaming XML. In Www (pp. 1053-1062).

Lange, M., & Lei3, H. (2009). To CNF or not to CNF? An efficient yet presentable version
of the CYK algorithm. Informatica Didactica, 8(2009).

Li, W., Shi, X., Huang, D., Shen, X., Chen, J., Kobayashi, H. H., ... Shibasaki, R. (2023).
Predlife: Predicting fine-grained future activity patterns. IEEE Trans. Big Data,
9(6), 1658-1669.

Liang, W., Cao, J., Chen, L., Wang, Y., Wu, J., Beheshti, A., & Tang, J. (2023). Crime

https://www.itu.int/itu-d/reports/statistics/2023/10/10/ff23-internet-use/
https://www.itu.int/itu-d/reports/statistics/2023/10/10/ff23-internet-use/
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf
https://www.informaticadidactica.de/uploads/Artikel/LangeLeiss2009/LangeLeiss2009.pdf

193

prediction with missing data via spatiotemporal regularized tensor decomposition.
IEEE Trans. Big Data, 9(5), 1392-1407.

Libkin, L. (2004). Elements of finite model theory (Vol. 41). Springer.

Lohrey, M. (2012). Algorithmics on SLP-compressed strings: A survey. Groups Complex.
Cryptol., 4(2), 241-299.

Maturana, F., Riveros, C., & Vrgoc, D. (2018). Document spanners for extracting incom-
plete information: Expressiveness and complexity. In Pods (pp. 125-136).

Maurer, H. A. (1969). A direct proof of the inherent ambiguity of a simple context-free
language. JACM, 16(2).

Netflix. (2012). Netflix recommendations: Beyond the 5 stars (part 1).
https://netflixtechblog.com/netflix-recommendations
-beyond-the-5-stars—-part-1-55838468£429. (Accessed: 2024-02-
20)

Nikolic, M., & Olteanu, D. (2018). Incremental view maintenance with triple lock factor-
ization benefits. In Sigmod (pp. 365-380).

Nowotka, D., & Srba, J. (2007). Height-deterministic pushdown automata. In Mfcs.

Olteanu, D. (2007). SPEX: Streamed and progressive evaluation of XPath. IEEE Trans.
Knowl. Data Eng., 19(7), 934-949.

Olteanu, D., Furche, T., & Bry, F. (2004). An efficient single-pass query evaluator for
XML data streams. In Sac (pp. 627-631).

Olteanu, D., & Zavodny, J. (2015). Size bounds for factorised representations of query
results. ACM TODS, 40(1), 2:1-2:44.

Peterfeund, L. (2019). The complexity of relational queries over extractions
from text (Doctoral dissertation, Technion). Retrieved from http://
WWwW.Ccs.technion.ac.il/users/wwwb/cgi-bin/tr—-get.cgi/
2019/PHD/PHD-2019-10.pdf

Peterfreund, L. (2021). Grammars for document spanners. In Icdt (pp. 7:1-7:18).

Peterfreund, L. (2023). Enumerating grammar-based extractions. Discrete Applied Math-
ematics, 341, 372-392.

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
http://www2.informatik.uni-stuttgart.de/fmi/szs/people/nowotka/Papers/Hpda.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2019/PHD/PHD-2019-10.pdf

194

Peterfreund, L., ten Cate, B., Fagin, R., & Kimelfeld, B. (2019). Recursive programs for
document spanners. In Icdt.

Pin, J. (Ed.). (2021). Handbook of automata theory. European Mathematical Society
Publishing House, Ziirich, Switzerland.

Rytter, W. (2002). Application of lempel-ziv factorization to the approximation of
grammar-based compression. In Cpm (Vol. 2373, pp. 20-31).

Schmid, M. L., & Schweikardt, N. (2021). Spanner evaluation over SLP-compressed
documents. In Pods (pp. 153-165).

Schmid, M. L., & Schweikardt, N. (2022). Query evaluation over SLP-represented docu-
ment databases with complex document editing. In Pods (pp. 79-89).

Schmitz, S. (2012). Can all unambiguous grammars be parsed in linear time? Theo-
retical Computer Science Stack Exchange. Retrieved from https://cstheory
.stackexchange.com/q/10504 (Version: 2012-03-02)

Segoufin, L. (2013). Enumerating with constant delay the answers to a query. In Icdt (pp.
10-20).

Segoufin, L., & Vianu, V. (2002). Validating streaming XML documents. In Pods (pp.
53-64).

Shalem, M., & Bar-Yossef, Z. (2008). The space complexity of processing XML twig
queries over indexed documents. In Icde (pp. 824-832).

Similarweb. (2024). Top websites ranking. https://www.similarweb.com/top
-websites/. (Accessed: 2024-02-20)

Storer, J. A., & Szymanski, T. G. (1982). Data compression via textual substitution. J.
ACM, 29(4), 928-951.

ten Cate, B., & Marx, M. (2007). Navigational XPath: calculus and algebra. SIGMOD
Record, 36(2), 19-26.

Torunczyk, S. (2020). Aggregate queries on sparse databases. In Pods (pp. 427-443).

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE Trans. Inf. Theory, 23(3), 337-343.

https://drops.dagstuhl.de/opus/volltexte/2019/10315/pdf/LIPIcs-ICDT-2019-13.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10315/pdf/LIPIcs-ICDT-2019-13.pdf
https://cstheory.stackexchange.com/q/10504
https://cstheory.stackexchange.com/q/10504
https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/

	AGRADECIMIENTOS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Summary of contributions
	1.1.1. Nested streaming queries
	1.1.2. Annotated Grammars
	1.1.3. Queries over compressed documents

	2. PRELIMINARIES
	2.1. Strings and Finite State Automata
	2.2. Document Spanners
	2.3. Enumeration Algorithms
	2.4. Model of Computation

	3. ENUMERATION FOR NESTED QUERIES
	3.1. Preliminaries
	3.2. Streaming evaluation with output-linear delay
	3.3. Visibly pushdown annotators
	3.4. Results and discussion
	3.5. Enumerable compact sets: a data structure for output-linear delay
	3.6. Evaluating visibly pushdown annotators with output-linear delay
	3.7. Application: document spanners and extraction grammars
	3.8. Related Work

	4. ENUMERATION FOR ANNOTATED GRAMMARS
	4.1. Grammars and Annotators
	4.2. Unambiguous Grammars
	4.3. Rigid Grammars
	4.3.1. Definitions

	4.4. Pushdown Annotators
	4.5. Application: Document Spanners
	4.6. Related Work

	5. ENUMERATION ON SLP-COMPRESSED DOCUMENTS
	5.1. Setting and main problem of the chapter
	5.2. Enumerable compact sets with shifts
	5.3. Evaluation of annotated automata over SLP-compressed strings
	5.4. Applications in regular spanners
	5.5. Constant-delay preserving complex document editing

	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

